A-D-A Molecule-Bridge Interface for Efficient Perovskite Solar Cells and Modules.

Adv Mater

Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.

Published: June 2024

As the photovoltaic field endeavors to transition perovskite solar cells (PSCs) to industrial applications, inverted PSCs, which incorporate fullerene as electron transport layers, have emerged as a compelling choice due to their augmented stability and cost-effectiveness. However, these attributes suffer from performance issues stemming from suboptimal electrical characteristics at the perovskite/fullerene interface. To surmount these hurdles, an interface bridging strategy (IBS) is proposed to attenuate the interface energy loss and enhance the interfacial stability by designing a series of A-D-A type perylene monoimide (PMI) derivatives with multifaceted advantages. In addition to passivating defects, the IBS plays a crucial role in facilitating the binding between perovskite and fullerene, thereby enhancing interface coupling and importantly, improving the formation of fullerene films. The PMI derivatives, functioning as bridges, serve as a protective barrier to enhance the device stability. Consequently, the IBS enables a remarkable efficiency of 24.62% for lab-scale PSCs and an efficiency of 18.73% for perovskite solar modules craft on 156 × 156 mm substrates. The obtained efficiencies represent some of the highest recorded for fullerene-based devices, showcasing significant progress in designing interfacial molecules at the perovskite/fullerene interface and offering a promising path to enhance the commercial viability of PSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202314098DOI Listing

Publication Analysis

Top Keywords

perovskite solar
12
solar cells
8
perovskite/fullerene interface
8
pmi derivatives
8
interface
6
a-d-a molecule-bridge
4
molecule-bridge interface
4
interface efficient
4
perovskite
4
efficient perovskite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!