Background: Arginase 1 (Arg1) encodes a key enzyme that catalyzes the metabolism of arginine to ornithine and urea. In our recent study, we found that knockdown of Arg1 in the lungs of fetal mice induces apoptosis of epithelial cells and dramatically delays initiation of labor. As the most abundant internal mRNA modification, N -methyladenosine (m A) has been found to play important roles in lung development and cellular differentiation. However, if the knockdown of Arg1 affects the RNA m6A modification in fetal lungs remains unknown.
Methods: In the current study, the RNA m6A levels and the expression of RNA m6A related enzymes were validated in 13.0 dpc fetal lungs that Arg1 was knocked down by adeno-associated virus carrying Arg1-shRNA, using western blot, immunofluorescence, and RT-qPCR.
Results: No statistical differences were found in the expression of methyltransferase, demethylases, and binding proteins in the fetal lungs between AAV-shArg1-injected mice and AAV-2/9-injected mice. Besides, there is no significant change of overall RNA m6A level in fetal lungs from AAV-shArg1-injected mice, compared with that from AAV-2/9-injected mice.
Conclusions: These results indicate that arginase 1 does not affect RNA m6A methylation in mouse fetal lung, and the mechanisms other than RNA m6A modification underlying the effects of Arg1 knockdown on the fetal lung development and their interaction with labor initiation need to be further explored.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bdr2.2318 | DOI Listing |
Sci Rep
January 2025
Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, No. 950 Donghai Street, Fengze District, Quanzhou, 362000, Fujian, China.
The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC).
View Article and Find Full Text PDFNat Commun
January 2025
Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
N-methyladenosine (mA) is among the most abundant mRNA modifications, yet its cell-type-specific regulatory roles remain unclear. Here we show that mA methyltransferase-like 14 (METTL14) differentially regulates transcriptome in brown versus white adipose tissue (BAT and WAT), leading to divergent metabolic outcomes. In humans and mice with insulin resistance, METTL14 expression differs significantly from BAT and WAT in the context of its correlation with insulin sensitivity.
View Article and Find Full Text PDFBMC Genomics
January 2025
State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
Infectious spleen and kidney necrosis virus (ISKNV) is a highly virulent and rapidly transmissible fish virus that poses threats to the aquaculture of a wide variety of freshwater and marine fish. N6-methyladenosine (mA), recognized as a common epigenetic modification of RNA, plays an important regulatory role during viral infection. However, the impact of mA RNA methylation on the pathogenicity of ISKNV remains unexplored.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Zhengzhou Key Laboratory of Cardiovascular Aging, Henan Province Key Laboratory for Prevention and Treatment of Coronary Heart Disease, National Health Commission key Laboratory of Cardiovascular Regenerative Medicine, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
N6-adenosine methylation (m6A) of RNA is involved in the regulation of various diseases. However, its role in chemotherapy-related vascular endothelial injury has not yet been elucidated. We found that methyltransferase-like 3 (METTL3) expression was significantly reduced during doxorubicin (DOX)-induced apoptosis of vascular endothelial cells both in vivo and in vitro, and that silencing of METTL3 further intensified this process.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Department of Clinical Laboratory, Norinco General Hospital, Xi'an, Shaanxi, China.
Background: Recent studies show that N6-methyladenosine (m6A) plays an important role in the pathogenesis of the Alzheimer's disease (AD), while the mechanisms involved were studied insufficiently.
Aims: The present study aimed to explore the effect of human insulin-like growth factor 2 (IGF2) mRNA binding proteins 2 (IGF2BP2), one of the m6A-binding proteins on the progression of AD.
Materials & Methods: The mRNA and protein expression level were determined using RT-qPCR and western blot, respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!