Similar Publications

Merging Photoinduced Electron Transfer with Hydrogen Atom Transfer: Formal β-C(sp)-H Pyridination of Carbonyls.

J Org Chem

January 2025

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.

In this study, a novel approach that combines photoinduced electron transfer (ET) with hydrogen atom transfer (HAT) has been introduced for the selective β-C(sp)-H pyridination of carbonyl compounds. This method is notable for its absence of transition metals and its ability to function under benign reaction conditions, resulting in a range of pyridinated carbonyl derivatives with consistently moderate to good yields. The significance of this technique is further underscored by its potential for the late-stage functionalization of pharmaceutically significant molecules.

View Article and Find Full Text PDF

Photoinduced Pd-Catalyzed 1,4-Dicarbofunctionalization of 1,3-Butadienes via Aliphatic C-H Bond Elaboration.

Org Lett

January 2025

Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.

A three-component coupling strategy for 1,4-dicarbofunctionalization of 1,3-butadiene with C-H bearing substrates has been developed using photoinduced Pd catalysis, with aryl bromide serving as the hydrogen atom transfer (HAT) reagent. This photocatalytic coupling process achieves functionalized oxindole motifs in good yield and regioselectivity under mild reaction conditions. The versatility and synthetic utility of this method are demonstrated through the addition of a variety of C-H-bearing partners and various oxindole substrates to both substituted and unsubstituted butadiene.

View Article and Find Full Text PDF

Photoinduced ligand-to-metal charge transfer (LMCT) in organic synthesis: reaction modes and research advances.

Chem Commun (Camb)

January 2025

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China.

In recent years, visible light-induced ligand-to-metal charge transfer (LMCT) has emerged as an attractive approach for synthesizing a range of functionalized molecules. Compared to conventional photoredox reactions, photoinduced LMCT activation does not depend on redox potential and offers diverse reaction pathways, making it particularly suitable for the activation of inert bonds and the functional modification of complex organic molecules. This review highlights the indispensable role of photoinduced LMCT in synthetic chemistry, with a focus on recent advancements in LMCT-mediated hydrogen atom transfer (HAT), C-C bond cleavage, decarboxylative transformations, and radical ligand transfer (RLT) reactions.

View Article and Find Full Text PDF

Transformation mechanism, kinetics and ecotoxicity of kaempferol and quercetin in the gaseous and aqueous phases: A theoretical combined experimental study.

Sci Total Environ

January 2025

Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China.

The transformation and risk assessment of flavonoids triggered by free radicals deserve extensive attention. In this work, the degradation mechanisms, kinetics, and ecotoxicity of kaempferol and quercetin mediated by ∙OH, ∙OCH, ∙OOH, and O in gaseous and aqueous environments were investigated using cell experiments and quantum chemical calculations. Three radical scavenging mechanisms, including hydrogen atom transfer (HAT), radical adduct formation (RAF) and single electron transfer (SET) were discussed.

View Article and Find Full Text PDF

How does dopamine convert into norepinephrine? Insights on the key step of the reaction.

J Mol Model

January 2025

Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago de Chile, Chile.

Context: Dopamine -monooxygenase (D M) is an essential enzyme in the organism that regioselectively converts dopamine into R-norepinephrine, the key step of the reaction, studied in this paper, is a hydrogen atom transfer (HAT) from dopamine to a superoxo complex on D M, forming a hydroperoxo intermediate and dopamine radical. It was found that the formation of a hydrogen bond between dopamine and the D M catalyst strengthens the substrate-enzyme interaction and facilitates the HAT which takes place selectively to give the desired enantiomeric form of the product. Six reactions leading to the hydroperoxo intermediate were analyzed in detail using theoretical and computational tools in order to identify the most probable reaction mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!