Advances in site-selective molecular editing have enabled structural modification on complex molecules. However, thus far, their applications have been restricted to C-H functionalization chemistry. The modification of the underlying molecular skeleton remains limited. Here, we describe a skeletal editing approach that provides access to benzazepine structures through direct nitrogen atom insertion into arenols. Using widely available arenols as benzazepine precursors, this alternative approach allowed the streamlined assembly of benzazepines with broad functional group tolerance. Experimental mechanistic studies support a reaction pathway involving dearomatizative azidation and then aryl migration. This study further highlights the potential for carbon-nitrogen transmutation sequences through combinations with oxidative carbon atom deletion, providing an alternative for the development of N-heteroarenes and demonstrating significant potential in materials chemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866339 | PMC |
http://dx.doi.org/10.1039/d3sc05367a | DOI Listing |
RSC Adv
January 2025
Department of Chemistry, Manipal University Jaipur VPO-Dehmi-Kalan, Off Jaipur Ajmer Express Way Jaipur Rajasthan 303007 India
Triazole, a nitrogen-containing five-membered heterocycle with two isomeric forms, 1,2,3-triazole and 1,2,4-triazole, has proven to be a valuable component in the pharmaceutical domain. Owing to its widespread utility in drug development, pharmaceutical and medicinal chemistry, several synthetic methods have been explored, such as different catalytic systems, solvents, and heating methodologies in recent years. However, some methods were associated with several limitations, such as harsh reaction conditions, high temperatures, low atom economy, and long reaction times.
View Article and Find Full Text PDFChempluschem
January 2025
University of Wroclaw: Uniwersytet Wroclawski, Chemistry, 14 F. Joliot-Curie 14, 50383, Wroclaw, POLAND.
The skeletal editing approach represents a paradigm shift in organic synthesis by directly targeting the molecular skeleton instead of relying on often long and complicated series of organic transformations. Recent advancements in nitrogen atom deletion reactions have enabled unprecedented late-stage, precise modifications of bioactive compounds and complex natural products, influencing a seemingly distant field such as supramolecular chemistry. In a recent contribution, the Leigh group demonstrated the extrusion of a nitrogen atom from an axle of a [2]rotaxane, extending the applicability of molecular editing to complex, mechanically interlocked architectures.
View Article and Find Full Text PDFChem Asian J
January 2025
Chulalongkorn University, Chemistry, THAILAND.
This research focuses on the selective detection of Hg2+ ions using hybrid nanosensors composed of rhodamine building blocks linked to polyamine units of varying chain lengths to produce Rho1-Rho4, which were subsequently conjugated with thioctic acid (RT1-RT4) and attached to the surface of gold nanoparticles to create hybrid nanosensors (GRT1-GRT4) designed for detecting heavy metals. The chemical structures, purity, morphology, and chemical composition were characterized through XRD, NMR, TEM, ATR-FTIR, and mass spectrometry. These hybrid nanosensors demonstrated excellent selectivity and sensitivity in colorimetric and fluorescence responses towards Hg2+, outperforming other metal ions.
View Article and Find Full Text PDFMolecules
January 2025
Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
Numerous emerging chemotherapeutic agents incorporate -heterocyclic fragments in their structures, with the quinoline skeleton being particularly significant. Our recent works have focused on glycoconjugates of 8-hydroxyquinoline (8-HQ), which demonstrated enhanced bioavailability and solubility compared to their parent compounds, although they fell short in selectivity. In this study, our objective was to improve the selectivity of glycoconjugates by replacing the oxygen atom with nitrogen by substituting the 8-HQ moiety with 8-aminoquinoline (8-AQ).
View Article and Find Full Text PDFMolecules
January 2025
Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
In recent years, a number of synthetic potentiators of antibiotics have been discovered. Their action can significantly enhance the antibacterial effect and limit the spread of antibiotic resistance through inhibition of bacterial cystathionine-γ-lyase. To expand the known set of potentiators, we developed methods for the synthesis of five new representatives of 6-bromoindole derivatives-potential inhibitors of bacterial cystathionine-γ-lyase-namely potassium 3-amino-5-((6-bromoindolyl)methyl)thiophene-2-carboxylate () and its 6-bromoindazole analogs ( and ), along with two 6-broindazole analogs of the parent compound .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!