Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Climate change is a vital driver of biodiversity patterns and species distributions, understanding how organisms respond to climate change will shed light on the conservation of endangered species. In this study, the MaxEnt model was used to predict the potential suitable area of 12 threatened medicinal plants in the QTP (Qinghai-Tibet Plateau) under the current and future (2050s, 2070s) three climate scenarios (RCP2.6, RCP4.5, RCP8.5). The results showed that the climatically suitable habitats for the threatened medicinal plants were primarily found in the eastern, southeast, southern, and some parts of the central regions on the QTP. Moreover, 25% of the threatened medicinal plants would have reduced suitable habitat areas within the next 30-50 years in the different future global warming scenarios. Among these medicinal plants, RT () would miss the most habitat (98.97%), while the RAN () would miss the least habitat (10.15%). Nevertheless, 33.3% of the threatened medicinal plants showed an increase in their future habitat area because of their physiological characteristics which are more adaptable to a wide range of climates. The climatic suitable habitat for 50% of the threatened medicinal plants would migrate to higher altitudes or higher latitudes regions. This study provides a data foundation for the conservation of biodiversity and wild medicinal plants on the QTP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867876 | PMC |
http://dx.doi.org/10.1002/ece3.11042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!