Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Arbuscular mycorrhizal (AM) fungi have been shown to be associated with an estimated 70 % of vascular terrestrial plants. Such relationships have been shown to be sensitive to soil disturbance, for example, tillage in the preparation of a seed bed. From the application of arable soil management, AM fungal populations have been shown to be negatively impacted in abundance and diversity, reducing plant growth and development. The present study aims to utilise two sources (multipurpose compost and a commercial inocula) of mycorrhizal fungi for the amendment of arable soils supporting Zulu winter wheat under controlled conditions and quantify plant growth responses. A total of nine fields across three participating farms were sampled, each farm practicing either conventional, reduced, or zero tillage soil management exclusively. Soil textures were assessed for each sampled soil. Via the employment of AM fungal symbiosis quantification methods, AM fungi were compared between soil amendments and their effects on crop growth and development. The present study was able to quantify a mean 6 cm increase to crop height (<0.001), 10 cm reduction to root length corresponding with a 2.45-fold increase in AM fungal arbuscular structures (<0.001), a 1.15-fold increase in soil glomalin concentration corresponding to a 1.26-fold increase in soil carbon, and a 1.32-fold increase in the relative abundance of molecular identified AM fungal sequences for compost amended soils compared to control samples. Mycorrhizal inocula, however, saw no change to crop height or root length, AM fungal arbuscules were reduced by 1.43-fold, soil glomalin was additionally reduced by 1.55-fold corresponding to a reduction in soil carbon by 1.31-fold, and a reduction to relative AM fungal species abundance by 1.26-fold. The present study can conclude the addition of compost as an arable soil amendment is more beneficial for the restoration of AM fungi beneficial to wheat production and soil carbon compared to the addition of a commercial mycorrhizal inocula.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866040 | PMC |
http://dx.doi.org/10.1099/acmi.0.000581.v5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!