Background: Liver dysfunction is one of the hallmarks of SARS-CoV-2 infection. The mechanism(s) of hepatic injury in SARS-CoV-2 infection remains controversial with some reporting viral replication and cellular injury and others suggesting lack of replication and injury due to non-cytopathogenic etiologies. To investigate this further, we evaluated SARS-CoV-2 replication in immortalized hepatic cell lines and primary hepatocytes, examined whether cell injury was associated with apoptotic pathways, and also determined the effect of the antiviral remdesivir on these processes.
Methods: Immortalized hepatocyte cell lines (HepG2 and Huh7.5), as well as primary human hepatocytes, were exposed to SARS-CoV-2 at a multiplicity of infection of 0.1 PFU/mL. Viral replication was evaluated by plaque assays, immunohistochemical staining for the viral spike protein, and caspase-3 expression evaluated with and without exposure to remdesivir.
Results: All hepatocyte cell lines and primary hepatocytes supported active replication of SARS-CoV-2. Significant cytopathic effect was observed by light microscopy, and caspase-3 staining supported activation of apoptotic pathways. Remdesivir abrogated infection in a dose-dependent fashion and was not independently associated with hepatocyte injury.
Conclusion: Hepatocytes appear to be highly permissive of SARS-CoV-2 replication which leads to rapid cell death associated with activation of apoptotic pathways. Viral replication and hepatocytes injury are abrogated with remdesivir. We conclude that active viral replication is most likely a key contributor to liver enzyme abnormalities observed in the setting of acute SARS-CoV-2 infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868721 | PMC |
http://dx.doi.org/10.20411/pai.v8i2.648 | DOI Listing |
J Med Virol
February 2025
Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China.
Virus budding is a critical step in the replication cycle of enveloped viruses, closely linked to viral spread, disease progression, and clinical outcomes. The budding of many enveloped RNA viruses is facilitated by the hijacking of the host endosomal sorting complex required for transport (ESCRT) proteins through viral late domains. These late domains are essential for progeny virus production and are highly conserved, making the interaction between late domains and host ESCRT proteins a potential target for the development of antiviral therapeutics.
View Article and Find Full Text PDFJ Med Virol
February 2025
Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
Epstein-Barr virus (EBV) infection is closely associated with the development of various tumors such as lymphomas and epithelial cancers. EBV has a discrete life cycle with latency and lytic phases. In recent years, significant progress has been made in the understanding of the mechanism underlying the transition of EBV from latency to lytic replication.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA.
Unlabelled: Bioluminescence imaging (BLI) using engineered bioluminescent viruses has emerged as a powerful tool for real-time, noninvasive monitoring of viral replication in living animals. While traditional luciferase-based systems, such as firefly luciferase, have been widely used, the NanoLuc luciferase system offers distinct advantages, including its significantly smaller gene size, increased brightness, and independence from ATP as a cofactor, allowing for extracellular detection. However, the utility of NanoLuc has been limited by its traditional substrate, furimazine, which exhibits poor water solubility and potential cytotoxicity.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
Herpesviruses, a family of large enveloped DNA viruses, establish persistent infections in a wide range of hosts. This characteristic requires an intricate network of interactions with their hosts and host cells. In recent years, the interplay between herpesviruses and the epitranscriptome-chemical modifications in transcripts that may affect mRNA biology and fate-has emerged as a novel aspect of herpesvirus-host interactions.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA.
Unlabelled: APOBEC3 proteins (A3s) play an important role in host innate immunity against viruses and DNA mutations in cancer. A3s-induced mutations in both viral and human DNA genomes vary significantly from non-lethal mutations in viruses to localized hypermutations, such as kataegis in cancer. How A3s are regulated remains largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!