Post-inflammatory hyperpigmentation (PIH) is a hypermelanosis that often occurs secondary to skin irritation or injury, especially in darker skin tones, for which there is currently a lack of effective treatment options. Few preclinical models are available to study PIH. Here, we show that the Yucatan miniature pig consistently develops PIH after skin injuries. Skin wounds were produced on Yucatan pigs by needle punches, full-thickness excisions, or burns. Wound sites were monitored and photographed regularly. Tissue samples were collected after 24 weeks and processed for histology/immunohistochemistry. Skin pigmentation and histologic changes were quantified by computer-assisted image analyses. All injury methods resulted in hyperpigmentation. Melanin content at the histologic level was quantified in the larger (burn and excision) wounds, showing a significant increase compared to uninjured skin. Increased melanin was found for both epidermal and dermal regions. Dermal melanin deposits were primarily clustered around the papillary vasculature, and were associated not with melanocytes but with leukocytes. The Yucatan miniature pig model recapitulates key clinical and histologic features of PIH in humans, including skin hyperpigmentation at both gross and histologic levels, and persistence of dermal melanin subsequent to injury. This model could be used to further our understanding of the etiology of PIH, and for new therapy development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pcmr.13162 | DOI Listing |
J Neuroinflammation
January 2025
Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington Kentucky, USA.
Objective: Therapeutic translation is challenging in spinal cord injury (SCI) and large animal models with high clinical relevance may accelerate therapeutic development. Pigs have important anatomical and physiological similarities to humans. Intraspinal inflammation mediates SCI pathophysiology.
View Article and Find Full Text PDFFood Res Int
January 2025
Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint Gilles, France. Electronic address:
Despite the WHO recommendations in favor of breastfeeding, most infants receive infant formulas (IFs), which are complex matrices involving numerous ingredients and processing steps. Our aim was to understand the impact of the quality of the protein ingredient in IFs on gut microbiota and physiology, blood metabolites and brain gene expression. Three IFs were produced using whey proteins (WPs) from cheese whey (IF-A) or ideal whey (IFs-C and -D) and caseins, either in a micellar form (IFs-A and -C) or partly in a non-micellar form (IF-D).
View Article and Find Full Text PDFAnat Rec (Hoboken)
December 2024
Department of Orthodontics, University of Washington, Seattle, Washington, USA.
Food Res Int
November 2024
STLO, L'Institut Agro, INRAE, 35042 Rennes, France. Electronic address:
J Biomech
December 2024
Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI 02912, USA; Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!