Although alterations in the autophagy-lysosome pathway have been observed in the SARS-CoV-2 infection and invasion process since the outbreak of the coronavirus disease in 2019, the in-depth mechanism of autophagic and lysosomal reprogramming by SARS-CoV-2 has yet to be well identified. Our recent study unveiled a pivotal role played by the open reading frame 7a (ORF7a) protein in the SARS-CoV-2 genome, particularly in the modulation of macroautophagy/autophagy flux and function during viral infection and pathogenesis. Our study elucidated the underlying molecular mechanisms by which SARS-CoV-2 ORF7a intercepts autophagic flux, evades host autophagy-lysosome degradation, and accelerates viral infection and progeny germination. Furthermore, our study highlights that ORF7a can be a therapeutic target, and glecaprevir may hold potential as a drug against SARS-CoV-2 by targeting ORF7a. The key observations revealed in this study also contribute to a growing understanding of the function of SARS-CoV-2 ORF7a and the mechanisms underlying COVID-2019 treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210892 | PMC |
http://dx.doi.org/10.1080/15548627.2024.2312787 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!