Extracellular vesicles (EVs) are nanosized particles released by nearly every cell type across all kingdoms of life. As a result, EVs are ubiquitously present in various human body fluids. Composed of a lipid bilayer, EVs encapsulate proteins, nucleic acids, and metabolites, thus playing a crucial role in immunity, for example, by enabling intercellular communication. More recently, there has been increasing evidence that EVs can also act as key regulators of allergic immune responses. Their ability to facilitate cell-to-cell contact and to transport a variety of different biomolecules enables active modulation of both innate and adaptive immune processes associated with allergic reactions. A comprehensive understanding of the intricate mechanisms underlying the interactions among allergens, immune cells, and EVs is imperative to develop innovative strategies for controlling allergic responses. This review highlights the recent roles of host cell- and bacteria-derived EVs in allergic diseases, presenting experimental and clinical evidence that underscores their significance. Additionally, the therapeutic potential of EVs in allergy management is outlined, along with the challenges associated with targeted delivery and cargo stability for clinical use. Optimization of EV composition and targeting strategies holds promise for advancing translational applications and establishing EVs as biomarkers or safe therapeutics for assessing allergic reactions. For these reasons, EVs represent a promising avenue for advancing both our understanding and management of allergic immune processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eji.202350392 | DOI Listing |
Parasitol Res
January 2025
School of Basic Medicine, Zunyi Medical University, Zunyi, China.
Parasitic infection is a complex process involving interactions among various immune cells. Regulatory B cells (Breg cells), a subset of B lymphocytes with immunosuppressive functions, play a role in modulating immune responses during infection to prevent excessive immune activation. This article reviews the origin, phenotype, and immunoregulatory mechanisms of Breg cells.
View Article and Find Full Text PDFParasit Vectors
January 2025
School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China.
Background: A fundamental tenet of the hygiene theory is the inverse association between helminth infections and the emergence of immune-mediated diseases. Research has been done to clarify the processes by which helminth-derived molecules can inhibit immunological disorders. This study aimed to evaluate the ability of Trichinella spiralis chitinase (Ts-chit) to ameliorate the symptoms of allergic airway inflammation.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
The root of asthma can be linked to early life, with prenatal environments influencing risk. We investigate the effects of maternal asthma on the offspring's lungs during fetal and adult life. Adult offspring of asthmatic mothers show an increase in lung group 2 innate lymphoid cell (ILC2) number and function with allergen-induced lung inflammation.
View Article and Find Full Text PDFAnn Allergy Asthma Immunol
January 2025
Global Medical Affairs, Specialty Care, GSK, London, UK. Electronic address:
Background: Some patients with severe asthma have overlapping allergic and eosinophilic phenotypes and may be eligible for anti-eosinophilic or anti-IgE biologics.
Objective: This post hoc sub-analysis assessed real-world mepolizumab effectiveness in patients with overlapping allergic and eosinophilic phenotypes, using 1-year data from the international, prospective REALITI-A study.
Methods: The clinically significant asthma exacerbation (CSE) rate was assessed 1 year prior to (pre-treatment) and following (follow-up) mepolizumab treatment, stratified by baseline total IgE levels (tIgE; <60, 60-<190, 190-<550, and ≥550 kU/L), atopic status (yes/no/unknown), prior omalizumab use (yes/no), geographic baseline omalizumab eligibility (eligible/non-eligible), and baseline tIgE level and blood eosinophil count (BEC) threshold combinations (<81 or ≥81 kU/L and <300 or ≥300 cells/µL).
Curr Allergy Asthma Rep
January 2025
Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
Purpose Of Review: There is an increasing awareness among clinicians that industrial and household food processing methods can increase or decrease the allergenicity of foods. Modification to allergen properties through processing can enable dietary liberations. Reduced allergenicity may also allow for lower risk immunotherapy approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!