Multiple emulsions are usually stabilized by amphiphilic molecules that combine the chemical characteristics of the different phases in contact. When one phase is a liquid crystal (LC), the choice of stabilizer also determines its configuration, but conventional wisdom assumes that the orientational order of the LC has no impact on the stabilizer. Here we show that, for the case of amphiphilic polymer stabilizers, this impact can be considerable. The mode of interaction between stabilizer and LC changes if the latter is heated close to its isotropic state, initiating a feedback loop that reverberates on the LC in form of a complete structural rearrangement. We utilize this phenomenon to dynamically tune the configuration of cholesteric LC shells from one with radial helix and spherically symmetric Bragg diffraction to a focal conic domain configuration with highly complex optics. Moreover, we template photonic microparticles from the LC shells by photopolymerizing them into solids, retaining any selected LC-derived structure. Our study places LC emulsions in a new light, calling for a reevaluation of the behavior of stabilizer molecules in contact with long-range ordered phases, while also enabling highly interesting photonic elements with application opportunities across vast fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10869789 | PMC |
http://dx.doi.org/10.1038/s41467-024-45674-5 | DOI Listing |
Mater Horiz
December 2024
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
Despite recent advancements in organic phosphors, the synthesis of monodisperse afterglow microparticles (MPs) suitable for creating photonic crystals remains challenging. The SiO matrix is an attractive host material for activating the long-lived emissions of doped molecules due to several factors, including its cross-linked polymer-like structure, abundance of -OH groups, robustness, and presence of numerous emitter defects. However, the Stöber method struggles to produce monodisperse molecule-doped SiO MPs due to the complexity of the system.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China.
Compared with traditional far-field objective lenses, microparticle lenses have a distinct advantage of nonobservance of the diffraction limit, which has attracted extensive attention for its application in subwavelength photolithography and super-resolution imaging. In this article, a complete simulation model for a microparticle lens assisted microscopic imaging system was built to analyze the imaging characteristics of any shape of microparticle lens. With this model, we simulated the resolution of a conventional objective lens, a microsphere lens and a hollow microsphere lens, which verified the correctness of our simulation model and demonstrated the super-resolution imaging ability of microsphere lenses.
View Article and Find Full Text PDFNanophotonics
November 2024
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
Structured beams carrying orbital angular momentum (OAM) provide powerful capabilities for applications in optical tweezers, super-resolution imaging, quantum optics, and ad-vanced microparticle manipulation. However, it is challenging for generate and control the OAM beams at the extreme ultraviolet (EUV) region due to the lack of suitable wave front shaping optics arise from being limited to the strong absorption of most materials. Here, we use a modified Fermat-spiral photon-sieve splitter to simultaneously generate two focused doughnut beams with opposite helical phase.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Biology, University of Rochester, Rochester, NY 14627.
Cutting-edge photonic devices frequently rely on microparticle components to focus and manipulate light. Conventional methods used to produce these microparticle components frequently offer limited control of their structural properties or require low-throughput nanofabrication of more complex structures. Here, we employ a synthetic biology approach to produce environmentally friendly, living microlenses with tunable structural properties.
View Article and Find Full Text PDFTalanta
March 2025
Ottawa-Carleton Chemistry Institute, Department of Chemistry Carleton University, Ottawa, ON, K1S 5B6, Canada. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!