Imaging-based deep learning in kidney diseases: recent progress and future prospects.

Insights Imaging

Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.

Published: February 2024

Kidney diseases result from various causes, which can generally be divided into neoplastic and non-neoplastic diseases. Deep learning based on medical imaging is an established methodology for further data mining and an evolving field of expertise, which provides the possibility for precise management of kidney diseases. Recently, imaging-based deep learning has been widely applied to many clinical scenarios of kidney diseases including organ segmentation, lesion detection, differential diagnosis, surgical planning, and prognosis prediction, which can provide support for disease diagnosis and management. In this review, we will introduce the basic methodology of imaging-based deep learning and its recent clinical applications in neoplastic and non-neoplastic kidney diseases. Additionally, we further discuss its current challenges and future prospects and conclude that achieving data balance, addressing heterogeneity, and managing data size remain challenges for imaging-based deep learning. Meanwhile, the interpretability of algorithms, ethical risks, and barriers of bias assessment are also issues that require consideration in future development. We hope to provide urologists, nephrologists, and radiologists with clear ideas about imaging-based deep learning and reveal its great potential in clinical practice.Critical relevance statement The wide clinical applications of imaging-based deep learning in kidney diseases can help doctors to diagnose, treat, and manage patients with neoplastic or non-neoplastic renal diseases.Key points• Imaging-based deep learning is widely applied to neoplastic and non-neoplastic renal diseases.• Imaging-based deep learning improves the accuracy of the delineation, diagnosis, and evaluation of kidney diseases.• The small dataset, various lesion sizes, and so on are still challenges for deep learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10869329PMC
http://dx.doi.org/10.1186/s13244-024-01636-5DOI Listing

Publication Analysis

Top Keywords

deep learning
40
imaging-based deep
32
kidney diseases
24
neoplastic non-neoplastic
16
learning
10
deep
9
imaging-based
8
learning kidney
8
future prospects
8
learning applied
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!