Osteoarthritis (OA) is the most prevalent degenerative musculoskeletal disease, severely impacting the function of patients and potentially leading to disability, especially among the elderly population. Natural products (NPs), obtained from components or metabolites of plants, animals, microorganisms etc., have gained significant attention as important conservative treatments for various diseases. Recently, NPs have been well studied in preclinical and clinical researches, showing promising potential in the treatment of OA. In this review, we summed up the main signaling pathways affected by NPs in OA treatment, including NF-κB, MAPKs, PI3K/AKT, SIRT1, and other pathways, which are related to inflammation, anabolism and catabolism, and cell death. In addition, we described the therapeutic effects of NPs in different OA animal models and the current clinical studies in OA patients. At last, we discussed the potential research directions including in-depth analysis of the mechanisms and new application strategies of NPs for the OA treatment, so as to promote the basic research and clinical transformation in the future. We hope that this review may allow us to get a better understanding about the potential bioeffects and mechanisms of NPs in OA therapy, and ultimately improve the effectiveness of NPs-based clinical conservative treatment for OA patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10870578 | PMC |
http://dx.doi.org/10.1186/s13020-024-00899-w | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.
Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.
C-Terminal cyclic imides are posttranslational modifications that can arise from spontaneous intramolecular cleavage of asparagine or glutamine residues resulting in a form of irreversible protein damage. These protein damage events are recognized and removed by the E3 ligase substrate adapter cereblon (CRBN), indicating that these aging-related modifications may require cellular quality control mechanisms to prevent deleterious effects. However, the factors that determine protein or peptide susceptibility to C-terminal cyclic imide formation or their effect on protein stability have not been explored in detail.
View Article and Find Full Text PDFPLoS One
January 2025
Foot and Mouth Disease Department, National Veterinary Research Institute, Vom, Plateau State, Nigeria.
The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Opthalmology, Chongqing Hechuan District People's Hospital, Chongqing, China.
Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.
Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!