AI Article Synopsis

  • Accurate quantification of HER2 gene amplification is crucial for predicting treatment response and prognosis in breast cancer, with FISH being the gold standard but having limitations.
  • This study explored a novel super-resolution fluorescence microscopy technique to enhance FISH signal visualization and improve HER2 classification based on 14 breast cancer tissue samples.
  • Results showed that super-resolution microscopy provided clearer images and improved signal counts, leading to better classification of HER2 FISH statuses, including the detection of previously ambiguous cases.

Article Abstract

Background: Accurate quantification of human epidermal growth factor receptor 2 (HER2) gene amplification is important for predicting treatment response and prognosis in patients with breast cancer. Fluorescence in situ hybridization (FISH) is the gold standard for the diagnosis of HER2 status, particularly in cases with equivocal status on immunohistochemistry (IHC) staining, but has some limitations of non-classical amplifications and such cases are diagnosed basing on additional IHC and FISH. This study investigated the clinical utility of a novel super-resolution fluorescence microscopy technique for the better FISH signal visualization and HER2 FISH classification.

Methods: Fourteen breast cancer tissue samples were retrospectively collected between September 2018 and February 2022, and FISH HER2 signal quantification was evaluated by determining the HER2/chromosome 17 centromere (CEP17) ratio and the number of HER2 signals per nucleus in super- versus conventional-resolution images.

Results: Super-resolution images maintained the same overall HER2 diagnosis from routine, but HER2 FISH amplification changed negative to monosomy in two cases. Two Letrozole non-response relapses coincided to monosomy samples. The median number of HER2 signals per nucleus was 7.5 in super-resolution images and 4.0 in conventional-resolution images in HER2-positive samples and 2.8 and 2.1 signals per nucleus, respectively, in HER2-negative samples.

Conclusions: Super-resolution images improved signal visualization, including a significant difference in the number of countable HER2 and CEP17 signals in a single nucleus compared with conventional-resolution images. Increased accuracy of signal quantification by super-resolution microscopy may provide clinicians with more detailed information regarding HER2 FISH status that allows to better FISH classification such as HER2-low samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868098PMC
http://dx.doi.org/10.1186/s13000-024-01455-8DOI Listing

Publication Analysis

Top Keywords

signal quantification
12
breast cancer
12
her2 fish
12
signals nucleus
12
super-resolution images
12
her2
11
fluorescence situ
8
situ hybridization
8
fish
8
better fish
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!