Tacrolimus, FK506, promotes bone formation in bone defect mouse model.

J Oral Biosci

Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan. Electronic address:

Published: June 2024

Objectives: Some studies have reported that tacrolimus (FK506), an immunosuppressant, may have positive effects on bone formation. However, the precise effects of FK506 on bone repair or osteoblasts remain inadequately elucidated, and limited research has explored the outcomes of its use in an in vivo mouse model. This study aims to examine the effects of FK506 on bone repair and osteoblast functions using bone defect and BMP-2-induced ectopic ossification mouse models, as well as cultured primary mouse osteoblasts treated with FK506.

Methods: We established mouse models of femur bone defect and BMP-2-induced ectopic ossification to evaluate the effect of FK506 on new bone formation, respectively. Additionally, primary mouse osteoblasts were cultured with FK506 and examined for gene expressions related to osteoblast differentiation.

Results: While FK506 promoted the repair of bone defect areas in the femur of the bone defect mouse model, it also led to widespread abnormal bone formation outside the intended area. Additionally, following the implantation of a collagen sponge containing BMP-2 into mouse muscle tissue, FK506 was found to promote ectopic ossification and enhance BMP-2-induced osteoblast differentiation in vitro. Our findings also revealed that FK506 increased the number of immature osteoblasts in the absence of BMP-2 without affecting osteoblast differentiation. Furthermore, direct effects were observed, reducing the ability of osteoblasts to support osteoclastogenesis.

Conclusions: These results indicate that FK506 increases new bone formation during bone repair and influences the proliferation of immature osteoblasts, as well as osteoblast-supported osteoclastogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.job.2024.02.003DOI Listing

Publication Analysis

Top Keywords

bone formation
20
bone defect
20
bone
13
mouse model
12
fk506 bone
12
bone repair
12
ectopic ossification
12
fk506
9
tacrolimus fk506
8
formation bone
8

Similar Publications

Unraveling melorheostosis: insights into clinical features, diagnosis, and treatment.

JBMR Plus

February 2025

Clinical Trials and Outcomes Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, United States.

Melorheostosis is a rare bone disease characterized by abundant bone formation with a characteristic radiographic appearance that resembles "dripping candle wax." Recent data have shown that the majority of cases are due to somatic activating mutations in bone. Melorheostosis has several clinical and radiographic presentations, which are now known to be caused by different somatic mutations such as , , , and .

View Article and Find Full Text PDF

Purpose: Cartilage repair necessitates adjunct therapies such as cell-based approaches, which commonly use MSCs and chondrocytes but is limited by the formation of fibro-hyaline cartilage. Articular cartilage-derived chondroprogenitors(CPs) offer promise in overcoming this, as they exhibit higher chondrogenic and lower hypertrophic phenotypes. The study aimed to compare the efficacy of various cell types derived from adult and foetal cartilage suspended in platelet-rich plasma(PRP) in repairing chondral defects in an Ex-vivo Osteochondral Unit(OCU) model.

View Article and Find Full Text PDF

FGFR2 directs inhibition of WNT signaling to regulate anterior fontanelle closure during skull development.

Development

January 2025

Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.

The calvarial bones of the infant skull are linked by transient fibrous joints known as sutures and fontanelles, which are essential for skull compression during birth and expansion during postnatal brain growth. Genetic conditions caused by pathogenic variants in FGFR2, such as Apert, Pfeiffer, Crouzon syndromes, result in calvarial deformities due to premature suture fusion and a persistently open anterior fontanelle (AF). In this study we investigated how Fgfr2 regulates AF closure by leveraging mouse genetics and single-cell transcriptomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!