This study examines the impact of Artificial Light at Night (ALAN) on two coral species, Acropora eurystoma and Pocillopora damicornis, in the Gulf of Aqaba/Eilat Red Sea, assessing their natural isotopic responses to highlight changes in energy and nutrient sourcing due to sensory light pollution. Our findings indicate significant disturbances in photosynthetic processes in Acropora eurystoma, as evidenced by shifts in δC values under ALAN, pointing to alterations in carbon distribution or utilization. In Pocillopora damicornis, similar trends were observed, with changes in δC and δN values suggesting a disruption in its nitrogen cycle and feeding strategies. The study also uncovers species-specific variations in heterotrophic feeding, a crucial factor in coral resilience under environmental stress, contributing to the corals' fixed carbon budget. Light measurements across the Gulf demonstrated a gradient of light pollution which possess the potential of affecting marine biology in the region. ALAN was found to disrupt natural diurnal tentacle behaviors in both coral species, crucial for prey capture and nutrient acquisition, thereby impacting their isotopic composition and health. Echoing previous research, our study underscores the need to consider each species' ecological and physiological contexts when assessing the impacts of anthropogenic changes. The findings offer important insights into the complexities of marine ecosystems under environmental stress and highlight the urgency of developing effective mitigation strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.170513 | DOI Listing |
J Cardiothorac Surg
January 2025
Department of Anesthesiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China.
Background: Near-infrared spectroscopy (NIRS) enables a non-invasive measurement of tissue oxygen saturation (StO) in regions illuminated by near-infrared lights. Vascular occlusion test (VOT) serves as a model to artificially induce forearm ischemia-reperfusion. The combination of StO monitoring and VOT allows for dynamic evaluation of the balance between oxygen delivery and consumption in tissue, as well as the functional reserve of microcirculation.
View Article and Find Full Text PDFSci Rep
January 2025
NeMO Lab, ASST GOM Niguarda Cà Granda Hospital, Milan, Italy.
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that can result in a progressive loss of speech due to bulbar dysfunction, which can have significant negative impact on the patient's mental well-being. Alternative Augmentative Communication (AAC) strategies based on synthetic voices have been shown to assist patients in maintaining communication and improving their Quality of Life (QoL). However, such synthetic voices are often perceived as impersonal and fail to capture the unique voice and identity of the patient.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, China.
Tin-lead perovskites provide an ideal bandgap for narrow-bandgap perovskites in all-perovskite tandem solar cells, fundamentally improving power conversion efficiency. However, light-induced degradation in ambient air is a major issue that can hinder the long-term operational stability of these devices. Understanding the specifics of what occurs during this pathway provides the direction for improving device stability.
View Article and Find Full Text PDFFood Res Int
January 2025
Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany. Electronic address:
Phenolic compounds are known for their health-promoting effects on humans. Pak choi (Brassica rapa ssp. chinensis) and Swiss chard (Beta vulgaris subsp.
View Article and Find Full Text PDFErgonomics
January 2025
Department of Psychology, and Institute for Simulation and Training, University of Central Florida, Orlando, FL, USA.
A critical metaphor for the development, implementation and penetration of autonomous machine systems into the world of human work is presented. Most especially, the ' concept is articulated which argues that the expropriation of human pre-eminence will be marked by a series of threshold events, some of which are, even now becoming evident. In particular, it indicates that there will be a watershed event in which differing and distinct expressions of applied autonomous systems will spontaneously coalesce to produce an emergent, general artificial intelligence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!