Rewiring cis-2-butene-1,4-dial mediated urinary metabolomics fingerprints of short-term exposure to furan.

Sci Total Environ

Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China. Electronic address:

Published: April 2024

Furan represents one of the dietary-sourced persistent organic pollutants and thermal processing contaminants. Given its widespread occurrence in food and various toxicological effects, accurately assessing furan exposure is essential for informing public health risks. Furan is metabolized to a reactive primary product, cis-2-butene-1,4-dial (BDA) upon absorption. Some of the resulting BDA-derived metabolites have been proposed as potential exposure biomarkers of furan. However, the lack of quantification for recognized and feasible furan biomarkers has hampered the development of internal exposure risk assessment of furan. In this study, we employed reliable non-targeted metabolomics techniques to uncover urinary furan metabolites and elucidate their chemical structures. We characterized 8 reported and 11 new furan metabolites derived from the binding of BDA with glutathione (GSH), biogenic amines, and/or amino acids in the urine of male rats subjected to varying doses of furan. Notably, a mono-GSH-BDA adduct named cyclic GSH-BDA emerged as a highly prospective specific biomarker of furan exposure, as determined by an ultrahigh-performance liquid chromatography-tandem mass spectrometry method. Cyclic GSH-BDA demonstrated a robust mass spectrometry ion response intensity and exhibited evident time- and dose response. Additionally, we conducted a comprehensive profiling of the kinetics of potential furan biomarkers over time to capture the metabolic dynamics of furan in vivo. Most urinary furan metabolites reached peak concentrations at either the first (3 h) or second (6 h) sampling time point and were largely eliminated within 36 h following furan treatment. The present study provides novel insights into furan metabolism and sheds light on the biomonitoring of furan exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.170946DOI Listing

Publication Analysis

Top Keywords

furan
17
furan exposure
12
furan metabolites
12
furan biomarkers
8
urinary furan
8
cyclic gsh-bda
8
mass spectrometry
8
exposure
6
rewiring cis-2-butene-14-dial
4
cis-2-butene-14-dial mediated
4

Similar Publications

Diels-Alder Reactions of Boron-Substituted Furans with -Phenylmaleimide: Strategies for Tuning the Reactivity and Selectivity.

J Org Chem

January 2025

Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.

The Diels-Alder reactions of boron-substituted furans with -phenylmaleimide have been investigated experimentally and computationally. In contrast to previous results with maleic anhydride, in this case potassium 3-furanyltrifluoroborate and the analogue at C-2 reacted efficiently, giving the [4 + 2] cycloadducts at room temperature with high yields. The diastereoisomer was obtained exclusively for the latter, while its C-3 counterpart showed variable / diastereoselectivities.

View Article and Find Full Text PDF

A signaling molecule from intratumor bacteria promotes trastuzumab resistance in breast cancer cells.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Molecular Nanostructure and Nanotechnology, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Emerging evidence indicates that intratumor bacteria exist as an active and specific tumor component in many tumor types beyond digestive and respiratory tumors. However, the biological impact and responsible molecules of such local bacteria-tumor direct interaction on cancer therapeutic response remain poorly understood. Trastuzumab is among the most commonly used drugs targeting the receptor tyrosine-protein kinase erbB-2 (ErbB2) in breast cancer, but its resistance is inevitable, severely limiting its clinical effectiveness.

View Article and Find Full Text PDF

Unlabelled: The implication of matrix metalloproteinase-12 (MMP-12) in various major disorders including cancer, COPD, cardiovascular disorders, and neurological diseases makes it a potential target for drug discovery. Contemplating the significance of MMP-12, a number of MMP-12 inhibitors were designed, synthesized and tested throughout the world but the non-selective nature of most of those molecules can lead to adverse drug interactions. In contradiction, the dibenzofuran (DBF) and dibenzothiophene (DBT) derivatives showed highly potent and selective MMP-12 inhibition.

View Article and Find Full Text PDF

Chrysanthemi Flos has been consumed as floral tea for centuries, but the effects of stir-frying on its chemical profile, sensory characteristics, and bioactivity remain unclear. This study used untargeted metabolomics, sensory assessment (E-eye, E-nose, E-tongue), and antioxidant activity evaluation to investigate compositional changes and their effects. In the metabolomics analysis, a total of 101 non-volatile and 306 volatile differential metabolites were identified.

View Article and Find Full Text PDF

Polyphenols as reactive carbonyl substances regulators: A comprehensive review of thermal processing hazards mitigation.

Food Res Int

January 2025

College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China. Electronic address:

Reactive carbonyl species (RCS) are a class of compounds with one or more C = O structures with highly reactive electrophilic properties. This comprehensive review delves into the multifaceted role of RCS in thermally processed foods, where they serve as both crucial intermediates in the development of food color and flavor, as well as precursors of potentially harmful compounds. By exploring the carbonyl pool concept, the impact of RCS equilibrium on the formation and reduction of hazardous substances such as acrylamide, hydroxymethylfurfural, advanced glycation end-products, and heterocyclic amines was elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!