Ferrihydrite is an effective adsorbent of chromate and arsenate. In order to gain insight into the application of ferrihydrite in water treatment, macroporous alginate/ferrihydrite beads, synthesized using two different methods (internal and encapsulation processes), were used in this work. The properties of the ferrihydrite were assessed using various techniques, including X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) theory, and zetametry. The results showed that the specific surface area of the ferrihydrite was 242 m/g, and the PZC was pH8. The kinetic and isotherm adsorption properties of the ferrihydrite were evaluated in this study. The results indicate that the pseudo second-order and Freundlich models accurately describe the kinetic and isotherm adsorption properties of chromates and arsenates. For chromate removal, ferrihydrite exhibited a relatively high adsorption capacity (40.7 mg/g) compared to other adsorbents. However, the arsenate adsorption capacity of MFHB-SI (140.8 mg/g) was shown to be the most optimal. The internal synthesis process was suitable for arsenate retention due to the resulting arsenate precipitation. The competitive adsorption analyses indicated that the presence of chromate does not limit the adsorption of arsenate. However, the presence of arsenate almost completely inhibits the adsorption of chromate when the arsenate concentration is above 50 mg/L, due to the precipitation reaction of arsenate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2024.118440 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Waste Science and Technology, Luleå University of Technology, Luleå, Sweden.
Improper management of wood impregnation chemicals and treated wood has led to soil contamination at many wood treatment sites, particularly with toxic substances like creosote oil and chromated copper arsenate (CCA). The simultaneous presence of these pollutants complicates the choice of soil remediation technologies, especially if they are to be applied in situ. In this laboratory study, we attempted to immobilise arsenic (As) and simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) (constituents of creosote oil) by applying a modified electrochemical oxidation method.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
November 2024
School of Biotechnology and Bioinformatics, D.Y. Patil University, Navi Mumbai, India.
Environ Sci Pollut Res Int
November 2024
Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
Chromium and arsenic are commonly found in water and wastewater as hexavalent chromium, Cr(VI), and inorganic arsenic species, such as pentavalent arsenic, As(V). In aqueous media, both Cr(VI) and As(V) exist predominantly in the form of oxy-anions. In our study, we prepared a polyethylenimine-silica composite material (SiO₂-PEI) as an adsorbent to study the adsorption capacity for chromate and arsenate ions.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
NUS Graduate School for Integrative Sciences & Engineering (NGS), Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117456, Singapore; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China. Electronic address:
Water contamination owing to anionic pollutants is a persisting and ubiquitous global threat. The current remediation technologies are mostly low in efficiency, expensive in materials and often associated with complicated processes. Herein, we report a characteristic zirconium-based nanocluster that can work as molecular robots for the efficient remediation of anions-contaminated water with great effectiveness and molecular-level accuracy.
View Article and Find Full Text PDFEnviron Sci Technol
August 2024
South Carolina University, Environmental Health Sciences, Arnold School of Public Health, 921 Assembly Street, Columbia, South Carolina 29208, United States.
Arctic autochthonous communities and the environment face unprecedented challenges due to climate change and anthropogenic activities. One less-explored aspect of these challenges is the release and distribution of anthropogenic nanomaterials in autochthonous communities. This study pioneers a comprehensive investigation into the nature and dispersion of anthropogenic nanomaterials within Arctic Autochthonous communities, originating from their traditional waste-burning practices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!