HistoriView: Implementation and Evaluation of a Novel Approach to Review a Patient Using a Scalable Space-Efficient Timeline without Zoom Interactions.

Appl Clin Inform

Department of Research Information Science and Computing, Mass General Brigham, Somerville, Massachusetts, United States.

Published: March 2024

Background:  Timelines have been used for patient review. While maintaining a compact overview is important, merged event representations caused by the intricate and voluminous patient data bring event recognition, access ambiguity, and inefficient interaction problems. Handling large patient data efficiently is another challenge.

Objective:  This study aims to develop a scalable, efficient timeline to enhance patient review for research purposes. The focus is on addressing the challenges presented by the intricate and voluminous patient data.

Methods:  We propose a high-throughput, space-efficient HistoriView timeline for an individual patient. For a compact overview, it uses nonstacking event representation. An overlay detection algorithm, y-shift visualization, and popup-based interaction facilitate comprehensive analysis of overlapping datasets. An i2b2 HistoriView plugin was deployed, using split query and event reduction approaches, delivering the entire history efficiently without losing information. For evaluation, 11 participants completed a usability survey and a preference survey, followed by qualitative feedback. To evaluate scalability, 100 randomly selected patients over 60 years old were tested on the plugin and were compared with a baseline visualization.

Results:  Most participants found that HistoriView was easy to use and learn and delivered information clearly without zooming. All preferred HistoriView over a stacked timeline. They expressed satisfaction on display, ease of learning and use, and efficiency. However, challenges and suggestions for improvement were also identified. In the performance test, the largest patient had 32,630 records, which exceeds the baseline limit. HistoriView reduced it to 2,019 visual artifacts. All patients were pulled and visualized within 45.40 seconds. Visualization took less than 3 seconds for all.

Discussion And Conclusion:  HistoriView allows complete data exploration without exhaustive interactions in a compact overview. It is useful for dense data or iterative comparisons. However, issues in exploring subconcept records were reported. HistoriView handles large patient data preserving original information in a reasonable time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10990596PMC
http://dx.doi.org/10.1055/a-2269-0995DOI Listing

Publication Analysis

Top Keywords

compact overview
12
patient data
12
patient
9
patient review
8
intricate voluminous
8
voluminous patient
8
large patient
8
historiview
7
data
5
historiview implementation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!