Chlorination of antiviral drug ribavirin: Kinetics, nontargeted identification, and concomitant toxicity evolution.

J Hazard Mater

Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:

Published: April 2024

Residual antiviral drugs in wastewater may increase the risk of generating transformation products (TPs) during wastewater treatment. Therefore, chlorination behavior and toxicity evolution are essential to understand the secondary ecological risk associated with their TPs. Herein, chlorination kinetics, transformation pathways, and secondary risks of ribavirin (RBV), one of the most commonly used broad-spectrum antivirals, were investigated. The pH-dependent second-order rate constants k increased from 0.18 M·s (pH 5.8) to 1.53 M·s (pH 8.0) due to neutral RBV and ClO as dominant species. 12 TPs were identified using high-resolution mass spectrometry in a nontargeted approach, of which 6 TPs were reported for the first time, and their chlorination pathways were elucidated. The luminescence inhibition rate of Vibrio fischeri exposed to chlorinated RBV solution was positively correlated with initial free active chlorine, probably due to the accumulation of toxic TPs. Quantitative structure-activity relationship prediction identified 7 TPs with elevated toxicity, concentrating on developmental toxicity and bioconcentration factors, which explained the increased toxicity of chlorinated RBV. Overall, this study highlights the urgent need to minimize the discharge of toxic chlorinated TPs into aquatic environments and contributes to environmental risk control in future pandemics and regions with high consumption of antivirals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.133478DOI Listing

Publication Analysis

Top Keywords

toxicity evolution
8
chlorinated rbv
8
tps
7
toxicity
5
chlorination
4
chlorination antiviral
4
antiviral drug
4
drug ribavirin
4
ribavirin kinetics
4
kinetics nontargeted
4

Similar Publications

PurposeChimeric antigen receptor (CAR) T-cell CD19 therapy has changed the treatment paradigm for patients with relapsed/refractory B-cell acute lymphoblastic leukemia. It is frequently associated with potentially severe toxicities: cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), and admission to PICU is often required. Some biomarkers seem to correlate with CRS severity.

View Article and Find Full Text PDF

This study investigates the dissemination of archaeological information on Twitter/X through the lens of cultural evolution. By analysing 132,230 tweets containing the hashtag #archaeology from 2021 to 2023, we examine how content and context-related factors influence retweeting behaviour. Our findings reveal that tweets with positive sentiment and non-threatening language are more likely to be shared, contrasting with the common negativity bias observed on social media.

View Article and Find Full Text PDF

Iodoform, a halogenated organic compound, has been a cornerstone in surgical practice due to its potent antiseptic and antimicrobial properties. This comprehensive review examines the historical evolution, mechanism of action, clinical applications, and safety profile of iodoform across various surgical disciplines. Historically significant formulations like Whitehead's varnish and bismuth iodoform paraffin paste (BIPP) demonstrated remarkable efficacy in wound healing during the late 19th and early 20th centuries.

View Article and Find Full Text PDF

The evolution of bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts that are highly active, stable, and conductive is crucial for advancing metal-air batteries and fuel cells. We have here thoroughly explored the OER and ORR performance for a category of two-dimensional (2D) metal-organic frameworks (MOFs) called TM(HADQ), and Rh(HADQ) exhibits a promising bifunctional OER/ORR activity, with an overpotential of 0.31 V for both OER and ORR.

View Article and Find Full Text PDF

Inhibition of the invasive plant Ambrosia trifida by Sigesbeckia glabrescens extracts.

Ecotoxicol Environ Saf

January 2025

Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address:

Ambrosia trifida is an invasive weed that destroys the local ecological environment, and causes a reduction in population diversity and grassland decline. The evolution of herbicide resistance has also increased the difficulty of managing A. trifida, so interspecific plant competition based on allelopathy has been used as an effective and sustainable ecological alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!