Parkinson's disease (PD) is characterized by the pathological deposition of a-synuclein (a-syn) inclusions, known as Lewy bodies/neurites. Emerging evidence suggests that extracellular vesicles (EVs) play a role in facilitating the spreading of Lewy pathology between the peripheral nervous system and the central nervous system. We analyzed serum EVs obtained from patients with PD (n = 142), multiple system atrophy (MSA) (n = 18), progressive supranuclear palsy (PSP) (n = 28), rapid eye movement sleep behavior disorder (n = 31), and controls (n = 105). While we observed a significant reduction in the number of EVs in PD compared to controls (p = 0.006), we also noted a substantial increase in filamentous α-synuclein within EVs in PD compared to controls (p < 0.0001), MSA (0.012), and PSP (p = 0.03). Further analysis unveiled the role of EVs in facilitating the transmission of filamentous α-synuclein between neurons and from peripheral blood to the CNS. These findings highlight the potential utility of serum α-synuclein filaments within EVs as diagnostic markers for synucleinopathies and underscore the significance of EVs in promoting the dissemination of filamentous α-synuclein throughout the entire body.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2024.149620 | DOI Listing |
The therapeutic potential of extracellular vesicles (EVs) in bone regeneration is noteworthy; however, their clinical application is impeded by low yield and limited efficacy. This study investigated the effect of low-intensity pulsed ultrasound (LIPUS) on the therapeutic efficacy of EVs derived from periodontal ligament stem cells (PDLSCs) and preliminarily explored its mechanism. PDLSCs were cultured with osteogenic media and stimulated with or without LIPUS, and then EVs and LIPUS-stimulated EVs (L-EVs) were isolated separately.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea.
Tumor-derived extracellular vesicle (tEV)-associated RNAs hold promise as diagnostic biomarkers, but their clinical use is hindered by the rarity of tEVs among nontumor EVs. Here, we present EV-CLIP, a highly sensitive droplet-based digital method for profiling EV RNA. EV-CLIP utilizes the fusion of EVs with charged liposomes (CLIPs) in a microfluidic chip.
View Article and Find Full Text PDFVirulence
December 2025
Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
is a gram-negative pathogen that can cause multiple diseases including sepsis, urinary tract infections, and pneumonia. The escalating detections of hypervirulent and antibiotic-resistant isolates are giving rise to growing public concerns. Outer membrane vesicles (OMVs) are spherical vesicles containing bioactive substances including lipopolysaccharides, peptidoglycans, periplasmic and cytoplasmic proteins, and nucleic acids.
View Article and Find Full Text PDFCells
January 2025
Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear.
View Article and Find Full Text PDFInt J Mol Med
March 2025
Department of Joint Surgery, Sports Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, P.R. China.
Exosomes are integral to the pathophysiology of osteoarthritis (OA) due to their roles in mediating intercellular communication and regulating inflammatory processes. Exosomes are integral to the transport of bioactive molecules, such as proteins, lipids and nucleic acids, which can influence chondrocyte behavior and joint homeostasis. Given their properties of regeneration and ability to target damaged tissues, exosomes represent a promising therapeutic avenue for OA treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!