AI Article Synopsis

  • Parkinson's disease (PD) is marked by the presence of Lewy bodies, which are made up of a protein called α-synuclein, and there is evidence suggesting that extracellular vesicles (EVs) help spread this pathology in the nervous system.
  • In a study analyzing serum EVs from various groups (including PD patients and healthy controls), researchers found a significant drop in EV numbers in PD patients, but an increase in filamentous α-synuclein within these EVs, indicating a potential link to the disease.
  • The results suggest that serum α-synuclein filaments in EVs could serve as useful diagnostic markers for diseases related to α-synuclein, and they highlight the role of EV

Article Abstract

Parkinson's disease (PD) is characterized by the pathological deposition of a-synuclein (a-syn) inclusions, known as Lewy bodies/neurites. Emerging evidence suggests that extracellular vesicles (EVs) play a role in facilitating the spreading of Lewy pathology between the peripheral nervous system and the central nervous system. We analyzed serum EVs obtained from patients with PD (n = 142), multiple system atrophy (MSA) (n = 18), progressive supranuclear palsy (PSP) (n = 28), rapid eye movement sleep behavior disorder (n = 31), and controls (n = 105). While we observed a significant reduction in the number of EVs in PD compared to controls (p = 0.006), we also noted a substantial increase in filamentous α-synuclein within EVs in PD compared to controls (p < 0.0001), MSA (0.012), and PSP (p = 0.03). Further analysis unveiled the role of EVs in facilitating the transmission of filamentous α-synuclein between neurons and from peripheral blood to the CNS. These findings highlight the potential utility of serum α-synuclein filaments within EVs as diagnostic markers for synucleinopathies and underscore the significance of EVs in promoting the dissemination of filamentous α-synuclein throughout the entire body.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.149620DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
8
nervous system
8
evs compared
8
compared controls
8
vesicles filamentous
4
filamentous alpha-synuclein
4
alpha-synuclein facilitate
4
facilitate propagation
4
propagation parkinson's
4
parkinson's pathology
4

Similar Publications

The therapeutic potential of extracellular vesicles (EVs) in bone regeneration is noteworthy; however, their clinical application is impeded by low yield and limited efficacy. This study investigated the effect of low-intensity pulsed ultrasound (LIPUS) on the therapeutic efficacy of EVs derived from periodontal ligament stem cells (PDLSCs) and preliminarily explored its mechanism. PDLSCs were cultured with osteogenic media and stimulated with or without LIPUS, and then EVs and LIPUS-stimulated EVs (L-EVs) were isolated separately.

View Article and Find Full Text PDF

Tumor-derived extracellular vesicle (tEV)-associated RNAs hold promise as diagnostic biomarkers, but their clinical use is hindered by the rarity of tEVs among nontumor EVs. Here, we present EV-CLIP, a highly sensitive droplet-based digital method for profiling EV RNA. EV-CLIP utilizes the fusion of EVs with charged liposomes (CLIPs) in a microfluidic chip.

View Article and Find Full Text PDF

derived outer membrane vesicles mediated bacterial virulence, antibiotic resistance, host immune responses and clinical applications.

Virulence

December 2025

Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.

is a gram-negative pathogen that can cause multiple diseases including sepsis, urinary tract infections, and pneumonia. The escalating detections of hypervirulent and antibiotic-resistant isolates are giving rise to growing public concerns. Outer membrane vesicles (OMVs) are spherical vesicles containing bioactive substances including lipopolysaccharides, peptidoglycans, periplasmic and cytoplasmic proteins, and nucleic acids.

View Article and Find Full Text PDF

In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear.

View Article and Find Full Text PDF

Potential and challenges of utilizing exosomes in osteoarthritis therapy (Review).

Int J Mol Med

March 2025

Department of Joint Surgery, Sports Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, P.R. China.

Exosomes are integral to the pathophysiology of osteoarthritis (OA) due to their roles in mediating intercellular communication and regulating inflammatory processes. Exosomes are integral to the transport of bioactive molecules, such as proteins, lipids and nucleic acids, which can influence chondrocyte behavior and joint homeostasis. Given their properties of regeneration and ability to target damaged tissues, exosomes represent a promising therapeutic avenue for OA treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!