This study explored the potential of Food Waste (FW) extract as a suitable substrate for Medium Chain Fatty Acids (MCFAs) production, in a single-phase reactor, where both fermentation and Chain Elongation (CE) processes occurred simultaneously. A continuous experiment was conducted with an Organic Loading Rate (OLR) = 20 gCOD L d and was fed in batch mode twice a week with pH = 6. In addition, four batch tests were performed, to assess the effects on the MCFAs production of caproate inhibition, hydrogen partial pressure (P) and different lactate/acetate ratios. Thermodynamics and electron flux were calculated to gain insights into the process pathways. Due to the presence of aminoacids, fermentation was mostly homolactic and both lactate and ethanol were produced as Electron Donors (EDs); the average MCFAs production efficiency was ∼ 12 %, although after 4 weeks the elongation process was halted, resulting in EDs accumulation. This occurred regardless of inoculum selection and the presence of caproate as a possible inhibitor, suggesting that EDs accumulation was due to the elongation process kinetics being slower than those of the fermentation step, thus calling for a longer Hydraulic Retention Time (HRT). It's worth noting that lactate was prevalently self-elongated to butyrate, whereas ethanol elongation only took place after lactate depletion, but was more efficient since it required other Electron Acceptors (EAs) such as butyrate, propionate or valerate. Moreover, the selected pH limited the acrylate pathway to a reasonable extent, whereas the high P prevented both ethanol and lactate oxydation to acetate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2024.01.049 | DOI Listing |
Animals (Basel)
December 2024
Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain.
The present study investigates the impact of supplementing diets with a synergistic blend of short- and medium-chain fatty acids (SCFAs-MCFAs) during the peripartum and lactation phases on early microbial colonization and the subsequent growth performance of newborn pigs. The experiment involved 72 sows and their litters, with a follow-up on 528 weaned pigs. Sows were fed either a control diet or a diet supplemented with SCFAs-MCFAs and the pigs were monitored for their growth performance and microbial populations.
View Article and Find Full Text PDFJ Environ Manage
December 2024
School of Civil and Environmental Engineering, University of New South Wales, Sydney, 2052, NSW, Australia. Electronic address:
Transforming waste activated sludge (WAS) into medium-chain fatty acids (MCFAs) via chain elongation (CE) technology is sustainable, yet pH effects on this process are poorly understood. In this study, semi-continuous flow experiments demonstrated that WAS degradation was highest under alkaline pH (10) but unsuitable for CE. Continuous output of MCFAs indicated that CE could be successfully performed under acidic pH (5) and neutral pH (7).
View Article and Find Full Text PDFChemosphere
December 2024
Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China. Electronic address:
The effect of zero-valent iron (ZVI) dosage on medium-chain fatty acids (MCFAs) production from sewage sludge fermentation was explored. ZVI within a dosage of 2-20 g/L favored MCFAs production. Adding 20 g/L ZVI (ZVI20) increased the MCFAs and long-chain alcohols (LCAs) production to 4079.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
December 2024
Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, 44227, Dortmund, Germany.
Medium chain fatty acids (MCFAs) are valuable platform compounds for the production of biotechnologically relevant chemicals such as biofuels and biochemicals. Two distinct pathways have been implemented in the yeast Saccharomyces cerevisiae for the biosynthetic production of MCFAs: (i) the mutant fatty acid biosynthesis (FAB) pathway in which the fatty acid synthase (FAS) complex is mutated and (ii) a heterologous multispecies-derived reverse β-oxidation (rBOX) pathway. Hexanoic acid has become of great interest as its acyl-CoA ester, hexanoyl-CoA, is required for the biosynthesis of olivetolic acid (OA), a cannabinoid precursor.
View Article and Find Full Text PDFAdv Pharmacol Pharm Sci
November 2024
Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan.
ER stress is a crucial factor in the progression of vascular cell diseases. Notably, octanoic acid (OA; C8:0) and decanoic acid (DA; C10:0), prominent components of medium-chain fatty acids (MCFAs), may provide potential health benefits. However, their effects on vascular smooth muscle cells (VSMCs) remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!