Reducing Interfacial Losses in Solution-Processed Integrated Perovskite-Organic Solar Cells.

ACS Appl Mater Interfaces

Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.

Published: February 2024

Low bandgap organic semiconductors have been widely employed to broaden the light response range to utilize much more photons in the inverted perovskite solar cells (PSCs). However, the serious charge recombination at the heterointerface contact between perovskite and organic semiconductors usually leads to large energy loss and limits the device performance. In this work, a titanium chelate, bis(2,4-pentanedionato) titanium(IV) oxide (CHOTi), was directly used as an interlayer between the perovskite layer and organic bulk heterojunction layer for the first time. Impressively, it was found that CHOTi can not only increase the surface potential of perovskite films but also show a positive passivation effect toward the perovskite film surface. Drawing from the above function, a smoother perovskite active layer with a higher work function was realized upon the use of CHOTi. As a result, the CHOTi-modified integrated devices show lower interfacial loss and obtain the best power conversion efficiency (PCE) of up to 20.91% with a high voltage of 1.15 V. The research offers a promising strategy to minimize the interfacial loss for the preparation of high-performance perovskite solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c18471DOI Listing

Publication Analysis

Top Keywords

solar cells
12
organic semiconductors
8
perovskite solar
8
interfacial loss
8
perovskite
7
reducing interfacial
4
interfacial losses
4
losses solution-processed
4
solution-processed integrated
4
integrated perovskite-organic
4

Similar Publications

The controlled growth of two-dimensional (2D) perovskite atop three-dimensional (3D) perovskite films reduces interfacial recombination and impedes ion migration, thus improving the performance and stability of perovskite solar cells (PSCs). Unfortunately, the random orientation of the spontaneously formed 2D phase atop the pre-deposited 3D perovskite film can deteriorate charge extraction owing to energetic disorder, limiting the maximum attainable efficiency and long-term stability of the PSCs. Here, we introduce a meta-amidinopyridine ligand and the solvent post-dripping step to generate a highly ordered 2D perovskite phase on the surface of a 3D perovskite film.

View Article and Find Full Text PDF

Acetate is a biological anion with many applications in the chemical and food industries. In addition to being a common microbial fermentative end-product, acetate can be produced by photosynthetic cyanobacteria from CO using solar energy. Using wild-type cells of the unicellular model cyanobacterium Synechocystis PCC 6803 only low levels of acetate are observed outside the cells.

View Article and Find Full Text PDF

In organic solar cells, the aggregation and crystallization of polymers are significant for bulk heterojunction. Blending with acceptor materials, polymer donor materials can adjust their aggregation by the movement of the chain segments. In this paper, the unfused structures based on thiophene and carbazole are respectively designed and introduced into the donor-acceptor copolymer donor materials to investigate the influence of flexible and rigid structures on polymer-aggregation leading photoelectric performance.

View Article and Find Full Text PDF

Few-Layered Black Phosphorene as Hole Transport Layer for Novel All-Inorganic Perovskite Solar Cells.

Materials (Basel)

January 2025

Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.

The CsPbBr perovskite exhibits strong environmental stability under light, humidity, temperature, and oxygen conditions. However, in all-inorganic perovskite solar cells (PSCs), interface defects between the carbon electrode and CsPbBr limit the carrier separation and transfer rates. We used black phosphorus (BP) nanosheets as the hole transport layer (HTL) to construct an all-inorganic carbon-based CsPbBr perovskite (FTO/c-TiO/m-TiO/CsPbBr/BP/C) solar cell.

View Article and Find Full Text PDF

The present article focuses on the characterization of the new biocomposites of poly(butylene succinate) (PBS) with fillers of plant origin such as onion peels (OP) and durum wheat bran WB () subjected to composting and artificial aging. The susceptibility to fungal growth, cytotoxicity and antibacterial properties were also examined. The biodegradation of the samples was investigated under normalized conditions simulating an intensive aerobic composting process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!