Influenza viruses escape immunity owing to rapid antigenic evolution, which requires vaccination strategies that allow for broadly protective antibody responses. We found that the lipid globotriaosylceramide (Gb3) expressed on germinal center (GC) B cells is essential for the production of high-affinity antibodies. Mechanistically, Gb3 bound and disengaged CD19 from its chaperone CD81, permitting CD19 to translocate to the B cell receptor complex to trigger signaling. Moreover, Gb3 regulated major histocompatibility complex class II expression to increase diversity of T follicular helper and GC B cells reactive with subdominant epitopes. In influenza infection, elevating Gb3, either endogenously or exogenously, promoted broadly reactive antibody responses and cross-protection. These data demonstrate that Gb3 determines the affinity and breadth of B cell immunity and has potential as a vaccine adjuvant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404827 | PMC |
http://dx.doi.org/10.1126/science.adg0564 | DOI Listing |
J Microbiol Biotechnol
December 2024
Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
Shiga toxins (Stxs), produced by serotype 1 and certain pathotypes, cause hemorrhagic colitis, which can progress to hemolytic uremic syndrome (HUS) and central nervous system (CNS) pathology. The underlying mechanisms of toxin-induced inflammation remain unclear. The p38 mitogen-activated protein kinase (MAPK) and its downstream target, MAPKAPK2 (MK2), play key roles in various cellular responses.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
Fabry disease is an X-linked lysosomal storage disorder caused by deficiency of the lysosomal enzyme ⍺-galactosidase-A (⍺-Gal A), resulting in widespread accumulation of terminal galactose-containing glycosphingolipids (GSLs) and the impairment of multiple organ systems. Thrombotic events are common in Fabry patients, with strokes and heart attacks being significant contributors to a shortened lifespan in patients of both genders. Previously, we developed an ⍺-Gal A-knockout (KO) murine model that recapitulates most Fabry symptomologies and demonstrated that platelets from KO males become sensitized to agonist-mediated activation.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha () gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction.
View Article and Find Full Text PDFiScience
October 2024
Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti, 9, Milan, Italy.
The present study describes and compares the impact of PCSK9 and LDLR, two pivotal players in cholesterol metabolism, on the whole lipidome of plasma, liver and aorta in different dietary conditions. This issue is relevant, since several lipid species, circulating at very low concentrations, have the ability to impair lipid metabolism and promote atherosclerosis development. To this aim, wild-type, hypercholesterolemic Ldlr-KO, and hypocholesterolemic Pcsk9-KO mice were fed a standard chow or a Western-type diet up to 30 and 16 weeks of age, respectively.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla St. 12, 53-114, Wroclaw, Poland. Electronic address:
Shiga toxin types 1 (Stx1) and 2 (Stx2), produced by Shiga toxin-producing Escherichia coli (STEC) and Shigella dysenteriae, are key virulence factors responsible for severe foodborne diseases, such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). The receptors for Stxs are Gb3 and P1 glycotope, which contain the Galα1→4Gal epitope and are synthesized by human α1,4-galactosyltransferase (A4galt). Stx-related infections pose a global public health challenge, owing to the limited therapeutic options due to the restricted use of antibiotics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!