Open-set object detection (OSOD) aims to detect the known categories and reject unknown objects in a dynamic world, which has achieved significant attention. However, previous approaches only consider this problem in data-abundant conditions, while neglecting the few-shot scenes. In this paper, we seek a solution for the generalized few-shot open-set object detection (G-FOOD), which aims to avoid detecting unknown classes as known classes with a high confidence score while maintaining the performance of few-shot detection. The main challenge for this task is that few training samples induce the model to overfit on the known classes, resulting in a poor open-set performance. We propose a new G-FOOD algorithm to tackle this issue, named Few-shOt Open-set Detector (FOOD), which contains a novel class weight sparsification classifier (CWSC) and a novel unknown decoupling learner (UDL). To prevent over-fitting, CWSC randomly sparses parts of the normalized weights for the logit prediction of all classes, and then decreases the co-adaptability between the class and its neighbors. Alongside, UDL decouples training the unknown class and enables the model to form a compact unknown decision boundary. Thus, the unknown objects can be identified with a confidence probability without any threshold, prototype, or generation. We compare our method with several state-of-the-art OSOD methods in few-shot scenes and observe that our method improves the F-score of unknown classes by 4.80%-9.08% across all shots in VOC-COCO dataset settings.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2024.3364495DOI Listing

Publication Analysis

Top Keywords

few-shot open-set
12
open-set object
12
object detection
12
generalized few-shot
8
unknown objects
8
few-shot scenes
8
unknown classes
8
unknown
7
open-set
5
few-shot
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!