Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Molecular Dynamics-based reaction analysis is an indispensable tool for studying processes defying the transition-state theory (TST), where the product ratios do not follow energies of transition states. The main class of such processes is ambimodal reactions, which have a post-transition-state bifurcation, so that several products form a single transition state. Multiple runs of molecular dynamics allow one to sample the space of possibilities and ultimately predict the product ratio without relying on TST; however, no techniques for estimating the reliability of the prediction were proposed so far. Here we show that dynamics runs follow the same rules as die rolls, which paves a simple way for estimating their uncertainty and, accordingly, the number of runs necessary to achieve the required accuracy. Remarkably, we find that the majority of such studies carried out in the last 5 years use far too few runs, so that the product ratios predicted in them can be off by >50% in more than 50% of cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c03540 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!