Motivated by the requirements of performance stability in environments of variable humidity, the focus of this study is on the effects and role of humidity-induced water molecules and ions in the contact electrification (CE) mechanisms of triboelectric materials. In particular, the compatibility of direct charge transfer-based CE and other generally known or proposed water molecules or OH/HO ion-facilitated CE mechanisms was assessed for a set of high-performance polymeric materials and functionalization molecules. The first set of test mechanisms included OH/HO ion adsorption at the low-humidity limit. The adsorption resulted in physisorption or H transfer involving reactions that were not fully compatible with charge affinity-driven CE reactions on the considered contact surfaces for both ions in terms of the potential increase of the resultant density of surface charge. An alternative mechanism, which yielded compatibility at a large humidity limit, consisted of free energy-driven segregation and separation of the ions. Further test mechanisms included water adsorption-induced charge transfer and two mechanisms pertinent to charged material transfer: adsorption modulation due to formation of water monolayers and water solvation-induced separation of polymer fragments. According to the obtained results, both mechanisms could be verified as viable contributors to enhanced charge transfer. Consequently, the results allowed for conclusions regarding the general applicability of different, water-assisted CE mechanisms and the selection of particular pairs of contact materials of similar type for optimum performance in humid environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.3c05716 | DOI Listing |
RSC Adv
January 2025
College of Agricultural Engineering and Food Science, Shandong University of Technology Zibo 255000 China
Green, efficient treatment of crude oil spills and oil pollutants is a global challenge, with adsorption technology favored for its efficiency and low environmental impact. The development of an environmentally friendly adsorbent with high hydrophobicity, excellent adsorption performance, and degradability is crucial to overcoming the limitations of petroleum-based adsorbents. Here, a lignin-based polyurethane foam (LPUF) with superhydrophobic and photothermal oil-absorbing properties was fabricated by incorporating octadecyltrimethoxysilane into the foam system.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
The ocean wave energy is considered one of the most promising forms of marine blue energy due to its vast reserves and high energy density. However, traditional electromagnetic power generation technology suffers from drawbacks such as high maintenance costs, heavy structures, and low conversion efficiency, which restricts its application range. The triboelectric nanogenerator (TENG) uses Maxwell displacement current as its internal driving force, which can efficiently convert irregular, low-frequency, and dispersed mechanical energy into electrical energy.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China.
The ability to rapidly charge batteries is crucial for widespread electrification across a number of key sectors, including transportation, grid storage, and portable electronics. Nevertheless, conventional Li-ion batteries with organic liquid electrolytes face significant technical challenges in achieving rapid charging rates without sacrificing electrochemical efficiency and safety. Solid-state batteries (SSBs) offer intrinsic stability and safety over their liquid counterparts, which can potentially bring exciting opportunities for fast charging applications.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
Triboelectrification-based artificial mechanoreceptors (TBAMs) is able to convert mechanical stimuli directly into electrical signals, realizing self-adaptive protection and human-machine interactions of robots. However, traditional contact-electrification interfaces are prone to reaching their deformation limits under large pressures, resulting in a relatively narrow linear range. In this work, we fabricated mechano-graded microstructures to modulate the strain behavior of contact-electrification interfaces, simultaneously endowing the TBAMs with a high sensitivity and a wide linear detection range.
View Article and Find Full Text PDFNat Commun
December 2024
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China.
The incompatibility of the high sensitivity and wide linear range still restricts the further development of active sensors. Here we report a triboelectric pressure sensor based on water-containing triboelectric elastomer with gradient-based microchannels. Tiny amount of liquid is injected into the triboelectric elastomer and the pressure-induced water bridges can modulate the built-in electric field of the sensor, which enhance the signal linearity near the compression limit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!