Background: The essential function of HBV DNA polymerase (HBV-DNA-Pol) is to initiate viral replication by reverse transcription; however, the role of HBV-DNA-Pol in HBV-associated HCC has not been clarified. Glycogen phosphorylase L (PYGL) is a critical regulator of glycogenolysis and is involved in tumorigenesis, including HCC. However, it is unknown whether HBV-DNA-Pol regulates PYGL to contribute to HCC tumorigenesis.

Methods: Bioinformatic analysis, real-time quantitative PCR, western blotting, and oncology functional assays were performed to determine the contribution of HBV-DNA-Pol and PYGL to HCC development and glycolysis. The mechanisms of co-immunoprecipitation and ubiquitination were employed to ascertain how HBV-DNA-Pol upregulated PYGL.

Results: Overexpression of HBV-DNA-Pol enhanced HCC progression in vitro and in vivo. Mechanistically, HBV-DNA-Pol interacted with PYGL and increased PYGL protein levels by inhibiting PYGL ubiquitination, which was mediated by the E3 ligase TRIM21. HBV-DNA-Pol competitively impaired the binding of PYGL to TRIM21 due to its stronger binding affinity to TRIM21, suppressing the ubiquitination of PYGL. Moreover, HBV-DNA-Pol promoted glycogen decomposition by upregulating PYGL, which led to an increased flow of glucose into glycolysis, thereby promoting HCC development.

Conclusions: Our study reveals a novel mechanism by which HBV-DNA-Pol promotes HCC by controlling glycogen metabolism in HCC, establishing a direct link between HBV-DNA-Pol and the Warburg effect, thereby providing novel targets for HCC treatment and drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10871796PMC
http://dx.doi.org/10.1097/HC9.0000000000000387DOI Listing

Publication Analysis

Top Keywords

hbv-dna-pol
11
hcc
10
pygl
9
hbv dna
8
dna polymerase
8
polymerase regulates
4
regulates tumor
4
tumor cell
4
glycogen
4
cell glycogen
4

Similar Publications

HOXA-AS2 Epigenetically Inhibits HBV Transcription by Recruiting the MTA1-HDAC1/2 Deacetylase Complex to cccDNA Minichromosome.

Adv Sci (Weinh)

June 2024

Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.

Persistent transcription of HBV covalently closed circular DNA (cccDNA) is critical for chronic HBV infection. Silencing cccDNA transcription through epigenetic mechanisms offers an effective strategy to control HBV. Long non-coding RNAs (lncRNAs), as important epigenetic regulators, have an unclear role in cccDNA transcription regulation.

View Article and Find Full Text PDF

HBV DNA polymerase upregulates the transcription of PD-L1 and suppresses T cell activity in hepatocellular carcinoma.

J Transl Med

March 2024

Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.

Background: In HBV-associated HCC, T cells often exhibit a state of functional exhaustion, which prevents the immune response from rejecting the tumor and allows HCC to progress. Moreover, polymerase-specific T cells exhibit more severe T-cell exhaustion compared to core-specific T cells. However, whether HBV DNA polymerase drives HBV-specific CD8 T cell exhaustion in HBV-related HCC remains unclear.

View Article and Find Full Text PDF

Background: The essential function of HBV DNA polymerase (HBV-DNA-Pol) is to initiate viral replication by reverse transcription; however, the role of HBV-DNA-Pol in HBV-associated HCC has not been clarified. Glycogen phosphorylase L (PYGL) is a critical regulator of glycogenolysis and is involved in tumorigenesis, including HCC. However, it is unknown whether HBV-DNA-Pol regulates PYGL to contribute to HCC tumorigenesis.

View Article and Find Full Text PDF

Background And Aims: Long noncoding RNAs (lncRNAs) have been associated with infection and hepatitis B virus (HBV)-related diseases, though the underlying mechanisms remain unclear.

Approach And Results: We obtained HBV-HCC lncRNA profiles by deep sequencing and found HOXA distal transcript antisense RNA (HOTTIP) to be significantly up-regulated. RT-qPCR indicated that HOTTIP is highly expressed in HBV-positive hepatoma tissue and induced by HBV in vitro.

View Article and Find Full Text PDF

The E3 Ubiquitin Ligase TRIM21 Promotes HBV DNA Polymerase Degradation.

Viruses

March 2020

Tianjin Life Science Research Center, Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 30070, China.

The tripartite motif (TRIM) protein family is an E3 ubiquitin ligase family. Recent reports have indicated that some TRIM proteins have antiviral functions, especially against retroviruses. However, most studies mainly focus on the relationship between TRIM21 and interferon or other antiviral effectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!