A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CuO/TiO/MXene-Based Sensor and SMS-TENG Array Integrated Inspection Robots for Self-Powered Ethanol Detection and Alarm at Room Temperature. | LitMetric

In this study, a high-precision CuO/TiO/MXene ethanol sensor operating at room temperature was prepared. The sensor exhibits excellent response value (95% @1 ppm ethanol), extremely low detection limit (0.3 ppm), fast response/recovery time (16/13 s), and remarkable long-term stability for trace detection of ethanol gas at room temperature, attributed to the p-n heterojunction formed by CuO and TiO, as well as the rich functional groups and large specific surface area of MXene. Furthermore, a high-performance triboelectric nanogenerator (SMS-TENG) was developed through the introduction of the silicone/Mxene@silicone dual dielectric layer as the triboelectric layer, which improves the charge storage capacity of the dielectric layer and greatly enhances the output performance of the TENG. At the optimal doping ratio, the open-circuit voltage of the SMS-TENG can reach 1160 V, which is sufficient to light 720 LEDs. By combining the sensor and SMS-TENG, the resistive response of ethanol sensing is converted to a voltage response, which amplifies the response value up to 15.8 times. Finally, the designed SMS-TENGs are expected to be arrayed on an inspection robot as energy supply and combined with the CuO/TiO/Mxene ethanol sensor to build a self-powered ethanol detection alarm system, endowing the inspection robot with the capability of self-powered ethanol detection at ppb level. This work provides an effective pathway for the intelligence of ethanol detection.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.3c01963DOI Listing

Publication Analysis

Top Keywords

ethanol detection
16
self-powered ethanol
12
room temperature
12
ethanol
9
sensor sms-teng
8
detection alarm
8
cuo/tio/mxene ethanol
8
ethanol sensor
8
dielectric layer
8
inspection robot
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!