Triple-negative breast cancer (TNBC) comprises 10 % to 20 % of breast cancer, however, it is more dangerous than other types of breast cancer, because it lacks druggable targets, such as the estrogen receptors (ER) and the progesterone receptor (PR), and has under expressed receptor tyrosine kinase, ErbB2. Present targeted therapies are not very effective and other choices include invasive procedures like surgery or less invasive ones like radiotherapy and chemotherapy. This study investigated the potential anticancer activity of some novel quinazolinone derivatives that were designed on the structural framework of two approved anticancer drugs, Ispinesib (KSP inhibitor) and Idelalisib (PI3Kδ inhibitor), to find out solutions for TNBC. All the designed derivatives (3a-l) were subjected to extra precision molecular docking and were synthesized and spectrally characterized. enzyme inhibition assay of compounds (3a, 3b, 3e, 3 g and 3 h) revealed their nanomolar inhibitory potential against the anticancer targets, KSP and PI3Kδ. Using MTT assay, the cytotoxic potential of compounds 3a, 3b and 3e were found highest against MDA-MB-231 cells with an IC of 14.51 µM, 16.27 µM, and 9.97 µM, respectively. Remarkably, these compounds were recorded safe against the oral epithelial normal cells with an IC values of 293.60 µM, 261.43 µM, and 222 µM, respectively. The anticancer potential of these compounds against MDA-MB-231 cells was revealed to be associated with their apoptotic activity. This was established by examination with the inverted microscope that revealed the appearance of various apoptotic features like cell shrinkage, apoptotic bodies, and membrane blebbing. Using flow cytometry, the Annexin V/PI-stained cancer cells showed an increase in early and late apoptotic cells. In addition, DNA fragmentation was revealed to occur after treatment with the tested compounds by gel electrophoresis. The relative gene expression of pro-apoptotic and anti-apoptotic genes revealed an overexpression of the and genes and a downregulation of the gene by real-time PCR. So, this work proved that compounds 3a, 3b, and 3e could be developed as anticancer candidates, via their P53-dependent apoptotic activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864842 | PMC |
http://dx.doi.org/10.1016/j.jsps.2024.101971 | DOI Listing |
Biomed Phys Eng Express
January 2025
School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.
View Article and Find Full Text PDFJMIR Hum Factors
January 2025
New College of Florida, Sarasota, FL, United States.
Background: Bangladesh and West Bengal, India, are 2 densely populated South Asian neighboring regions with many socioeconomic and cultural similarities. In dealing with breast cancer (BC)-related issues, statistics show that people from these regions are having similar problems and fates. According to the Global Cancer Statistics 2020 and 2012 reports, for BC (particularly female BC), the age-standardized incidence rate is approximately 22 to 25 per 100,000 people, and the age-standardized mortality rate is approximately 11 to 13 per 100,000 for these areas.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.
View Article and Find Full Text PDFPLoS One
January 2025
Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia.
This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!