Control and prevention of environmental pollution have emerged as paramount global concerns. Anthropogenic activities, such as industrial discharges, agricultural runoff, and improper waste disposal, introduce a wide range of contaminants into various ecosystems. These pollutants encompass organic and inorganic compounds, particulates, microorganisms, and disinfection by-products, posing severe threats to human health, ecosystems, and the environment. Effective monitoring methods are indispensable for assessing environmental quality, identifying pollution sources, and implementing remedial measures. This paper suggests that the development and utilization of highly advanced analytical tools are both essential for the analysis of contaminants in water samples, presenting a foundational hypothesis for the review. This paper comprehensively reviews the development and utilization of highly advanced analytical tools which is mandatory for the analysis of contaminants in water samples. Depending on the specific pollutants being studied, the choice of analytical methods widely varies. It also reveals insights into the diverse applications and effectiveness of these methods in assessing water quality and contaminant levels. By emphasizing the critical role of the reviewed monitoring methods, this review seeks to deepen the understanding of pollution challenges and inspire innovative monitoring solutions that contribute to a cleaner and more sustainable global environment.•Urgent global concerns: control and prevention of pollution from diverse sources.•Varied contaminants, diverse methods: comprehensive review of analytical tools.•Inspiring a sustainable future: innovative monitoring for a cleaner environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864661 | PMC |
http://dx.doi.org/10.1016/j.mex.2024.102582 | DOI Listing |
Viruses
December 2024
Foundation Plant Services, University of California-Davis, Davis, CA 95616, USA.
Among the cultivated crop species, the economically and culturally important grapevine plays host to the greatest number of distinctly characterized viruses. A critical component of the management and containment of these viral diseases in grapevine is both the identification of infected vines and the characterization of new pathogens. Next-generation high-throughput sequencing technologies, i.
View Article and Find Full Text PDFViruses
December 2024
State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Center for Swine Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
Porcine circovirus 3 (PCV3) is a small non-enveloped circovirus associated with porcine dermatitis and nephropathy syndrome (PDNS). It has occurred worldwide and poses a serious threat to the pig industry. However, there is no commercially available vaccine.
View Article and Find Full Text PDFViruses
November 2024
Virology Department, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar 220, Senegal.
Babanki virus is a subtype of the Sindbis virus, a widespread arthropod-borne alphavirus circulating in Eurasia, Africa, and Oceania. Characterized by rashes and arthritis, clinical infections due to Sindbis were mainly reported in Africa, Australia, Asia, and Europe. However, its sub-type, Babanki virus, was reported in Northern Europe and Africa, where its epidemiology potential remains poorly understood.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA.
Background/objectives: Host cell protein (HCP) content is a major attribute for biological and vaccine products that must be extensively characterized prior to product licensure. Enzyme Linked Immunosorbent Assay (ELISA) and Mass Spectrometry (MS) are conventional methods for quantitative host cell protein analysis in biologic and vaccine products. Both techniques are usually very tedious, labor-intensive, and challenging to transfer to other laboratories.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia.
Background: The COVID-19 pandemic has led to the rapid development of new vaccines and methods of testing vaccine-induced immunity. Despite the extensive research that has been conducted on the level of specific antibodies, less attention has been paid to studying the avidity of these antibodies. The avidity of serum antibodies is associated with a vaccine showing high effectiveness and reflects the process of affinity maturation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!