A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Species identification through deep learning and geometrical morphology in oaks ( spp.): Pros and cons. | LitMetric

Plant phenotypic characteristics, especially leaf morphology of leaves, are an important indicator for species identification. However, leaf shape can be extraordinarily complex in some species, such as oaks. The great variation in leaf morphology and difficulty of species identification in oaks have attracted the attention of scientists since Charles Darwin. Recent advances in discrimination technology have provided opportunities to understand leaf morphology variation in oaks. Here, we aimed to compare the accuracy and efficiency of species identification in two closely related deciduous oaks by geometric morphometric method (GMM) and deep learning using preliminary identification of simple sequence repeats (nSSRs) as . A total of 538 Asian deciduous oak trees, 16 and 23 populations, were firstly assigned by nSSRs Bayesian clustering analysis to one of the two species or admixture and this grouping served as a priori identification of these trees. Then we analyzed the shapes of 2328 leaves from the 538 trees in terms of 13 characters (landmarks) by GMM. Finally, we trained and classified 2221 leaf-scanned images with Xception architecture using deep learning. The two species can be identified by GMM and deep learning using genetic analysis as a priori. Deep learning is the most cost-efficient method in terms of time-consuming, while GMM can confirm the admixture individuals' leaf shape. These various methods provide high classification accuracy, highlight the application in plant classification research, and are ready to be applied to other morphology analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864717PMC
http://dx.doi.org/10.1002/ece3.11032DOI Listing

Publication Analysis

Top Keywords

deep learning
20
species identification
16
leaf morphology
12
leaf shape
8
gmm deep
8
species
7
deep
5
learning
5
morphology
5
oaks
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!