Artificial intelligence in cardiovascular medicine: An updated review of the literature.

J Cardiovasc Thorac Res

Department of Computer Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran.

Published: December 2023

Screening and early detection of cardiovascular disease (CVD) are crucial for managing progress and preventing related morbidity. In recent years, several studies have reported the important role of Artificial intelligence (AI) technology and its integration into various medical sectors. AI applications are able to deal with the massive amounts of data (medical records, ultrasounds, medications, and experimental results) generated in medicine and identify novel details that would otherwise be forgotten in the mass of healthcare data sets. Nowadays, AI algorithms are currently used to improve diagnosis of some CVDs including heart failure, atrial fibrillation, hypertrophic cardiomyopathy and pulmonary hypertension. This review summarized some AI concepts, critical execution requirements, obstacles, and new applications for CVDs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862032PMC
http://dx.doi.org/10.34172/jcvtr.2023.33031DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
intelligence cardiovascular
4
cardiovascular medicine
4
medicine updated
4
updated review
4
review literature
4
literature screening
4
screening early
4
early detection
4
detection cardiovascular
4

Similar Publications

Background: Delayed cerebral ischemia (DCI) is a primary contributor to death after subarachnoid hemorrhage (SAH), with significant incidence. Therefore, early determination of the risk of DCI is an urgent need. Machine learning (ML) has received much attention in clinical practice.

View Article and Find Full Text PDF

Background: Depression significantly impacts an individual's thoughts, emotions, behaviors, and moods; this prevalent mental health condition affects millions globally. Traditional approaches to detecting and treating depression rely on questionnaires and personal interviews, which can be time consuming and potentially inefficient. As social media has permanently shifted the pattern of our daily communications, social media postings can offer new perspectives in understanding mental illness in individuals because they provide an unbiased exploration of their language use and behavioral patterns.

View Article and Find Full Text PDF

The integration of artificial intelligence (AI) into health communication systems has introduced a transformative approach to public health management, particularly during public health emergencies, capable of reaching billions through familiar digital channels. This paper explores the utility and implications of generalist conversational artificial intelligence (CAI) advanced AI systems trained on extensive datasets to handle a wide range of conversational tasks across various domains with human-like responsiveness. The specific focus is on the application of generalist CAI within messaging services, emphasizing its potential to enhance public health communication.

View Article and Find Full Text PDF

Background: Patient engagement is a critical but challenging public health priority in behavioral health care. During telehealth sessions, health care providers need to rely predominantly on verbal strategies rather than typical nonverbal cues to effectively engage patients. Hence, the typical patient engagement behaviors are now different, and health care provider training on telehealth patient engagement is unavailable or quite limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!