Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Efficient catalytic hydrolysis of lignocellulosic biomass to sugars is a major challenge in the production of sustainable biofuels and chemical feedstocks. In this study isethionic acid was compared with HSO for hydrolysis of polysaccharides in corn stover, switch grass, and poplar. The catalytic activities of acids were compared by analysis of total reducing sugar (TRS) and glucose yields in a sequence of experiments in water at 90-190 °C using 0.050 mol of H/L isethionic acid and HSO. In comparison to using HSO, the use of isethionic acid catalyst lowered the maximum TRS percent yield temperatures by 25, 24, and 21% for corn stover, switch grass, and poplar. A similar effect was observed for glucose percent yields as well. This temperature reduction is due to lowering of the activation energy in the polysaccharide depolymerization reaction and most likely due to hydrogen-bonding-type dipolar interactions between the isethionic acid -OH group and -OH groups in biomass polysaccharides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10863032 | PMC |
http://dx.doi.org/10.1021/acs.iecr.3c02314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!