YB-1-based oncolytic virotherapy in combination with CD47 blockade enhances phagocytosis of pediatric sarcoma cells.

Front Oncol

Department of Pediatrics, Children's Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.

Published: January 2024

Oncolytic viruses (OVs) selectively replicate in tumor cells resulting in lysis, spreading of new infectious units and induction of antitumor immune responses through abrogating an immunosuppressive tumor microenvironment (TME). Due to their mode of action, OVs are ideal combination partners with targeted immunotherapies. One highly attractive combination is the inhibition of the 'don't-eat-me'-signal CD47, which is known to increase the phagocytic potential of tumor-associated macrophages. In this work, we analyzed the combination approach consisting of the YB-1-based oncolytic adenovirus XVir-N-31 (XVir) and the CD47 inhibitor (CD47i) B6.H12.2 concerning its phagocytic potential. We investigate phagocytosis of XVir-, adenovirus wildtype (AdWT)-, and non-infected established pediatric sarcoma cell lines by different monocytic cells. Phagocytes (immature dendritic cells and macrophages) were derived from THP-1 cells and healthy human donors. Phagocytosis of tumor cells was assessed via FACS analysis in the presence and absence of CD47i. Additional characterization of T cell-stimulatory surface receptors as well as chemo-/cytokine analyses were performed. Furthermore, tumor cells were infected and studied for the surface expression of the 'eat-me'-signal calreticulin (CALR) and the 'don't-eat-me'-signal CD47. We herein demonstrate that (1) XVir-infected tumor cells upregulate both CALR and CD47. XVir induces higher upregulation of CD47 than AdWT. (2) XVir-infection enhances phagocytosis in general and (3) the combination of XVir and CD47i compared to controls showed by far superior enhancement of phagocytosis, tumor cell killing and innate immune activation. In conclusion, the combination of CD47i and XVir causes a significant increase in phagocytosis exceeding the monotherapies considerably accompanied by upregulation of T cell-stimulatory receptor expression and inflammatory chemo/-cytokine secretion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865101PMC
http://dx.doi.org/10.3389/fonc.2024.1304374DOI Listing

Publication Analysis

Top Keywords

tumor cells
16
yb-1-based oncolytic
8
enhances phagocytosis
8
pediatric sarcoma
8
cells
8
'don't-eat-me'-signal cd47
8
phagocytic potential
8
phagocytosis tumor
8
combination
6
cd47
6

Similar Publications

Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.

View Article and Find Full Text PDF

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

Optimizing T cell inflamed signature through a combination biomarker approach for predicting immunotherapy response in NSCLC.

Sci Rep

December 2024

Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.

The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.

View Article and Find Full Text PDF

LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.

View Article and Find Full Text PDF

Enhancing antibody levels and T cell activity of quadrivalent influenza vaccine by combining it with CpG HP021.

Sci Rep

December 2024

State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.

Influenza virus infections are a serious danger to people's health worldwide as they are responsible for seasonal flu outbreaks. There is an urgent need to improve the effectiveness and durability longevity of the immune response to influenza vaccines. We synthesized the CpG HP021 and examined the impact of it on the immune response to an influenza vaccine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!