Introduction: plays a significant role in many indigenous medical systems, and it can be mostly found in Southeast Asia. The objective of the study was to synthesize and characterize the biosynthesized aluminum oxide nanoparticles (AlO-NPs) using and analyze their antibacterial (bactericidal), antioxidant, and anti-inflammatory activities.
Methods: The extract was prepared by the autoclave-assisted method, and the AlO-NPs were synthesized by the green synthesis method. The biosynthesized AlO-NPs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray (EDX) analysis. The antibacterial property was assessed by the Kirby-Bauer well diffusion method, and the antioxidant activity was checked by DPPH (2,2-diphenyl-1-picrylhydrazyl) activity compared with the control L-ascorbic acid. Anti-inflammatory activity was evaluated by an albumin denaturation assay, and diclofenac was used as a control. IBM SPSS Statistics for Windows, Version 21.0 was used for the statistical analysis. Results: An absorption peak at a wavelength of 380 nm was detected by UV-Vis spectroscopy analysis. It proves that AlO-NPs have been successfully produced by the green synthesis method. The results of the FT-IR study demonstrated the existence of numerous chemicals and functional groups in the 500-3500 cmrange. AlO-NPs from the plant extract were subjected to FE-SEM analysis, which revealed an aggregated or spherically cluster-like structure. The sample's elemental makeup, which revealed that it included 38% aluminum and 28% oxygen, was identified with the help of the EDX, and this verified the high purity of the AlO-NPs. The results of the antibacterial activity of AlO-NPs revealed that there was a zone of inhibition for however, there was no zone of inhibition for . The synthesized AlO-NPs exhibit strong antioxidative (DPPH activity) and anti-inflammatory (albumin denaturation assay) action. In this work, the in vitro antioxidant activity of was assessed using the standard, L-ascorbic acid, as a measure of DPPH activity. At a maximum concentration of 500 µg/ml, the obtained results showed the incredible antioxidant properties of the investigated AlO-NPs synthesized from the plant extracts and demonstrated 90% inhibition. AlO-NPs that were biosynthesized showed effective anti-inflammatory activity at a higher concentration of 100 µg/ml and demonstrated 89% inhibition in contrast to the drug diclofenac sodium.
Conclusion: According to the study's findings, AlO-NPs made using a greener synthesis approach have the potential to be used in a variety of industries and are also an affordable and sustainable way to effectively act as anti-inflammatory and antioxidant agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864816 | PMC |
http://dx.doi.org/10.7759/cureus.52279 | DOI Listing |
Org Lett
January 2025
Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.
Highly fluorinated naphthyl aldehyde and binaphthyl aldehyde ()- were designed and synthesized for fluorous-phase-based sensing. Greatly enhanced sensitivity and chemoselectivity in going from to ()- in the fluorescent detection of cysteine has been discovered. This is attributed to the increased structural rigidity of the axially chiral binaphthyl unit in ()- upon reaction with cysteine to form the corresponding thiazolidine product.
View Article and Find Full Text PDFMed Oncol
January 2025
Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
Reactive oxygen species (ROS) generated by oxidative stress have emerged as critical factors in the pathophysiology of malignancies. This study investigated the antioxidant and anticancer properties of zinc (Zn), selenium (Se), and silver (Ag) nanoparticles (NPs) against the A2780 human ovarian cancer cell line. Here, the bioinformatics approach was used to determine the top differentially expressed genes associated with oxidative stress.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
Herein, we present a Pd(OAc)/Dppp-catalyzed synthesis of 4-arylphenanthridinones from 2-bromobenzamides and iodobenzene, which undergoes successive Ullman cross-coupling, C-H activation, and oxidative coupling dehydrogenation process. The presented methods offer an adaptable and modular synthesis route for efficiently producing a wide array of valuable phenanthridiones, demonstrating exceptional compatibility with functional groups. Alternatively, a 1:1 cross-coupling reaction utilizing an intramolecular norbornene moiety as the ligand resulted in phenanthridinones through -arylation and C-H activation.
View Article and Find Full Text PDFDalton Trans
January 2025
Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China.
Exploring new photoexcited phosphors has attracted attention for improving the performance of white LEDs. Here, an NaBaAlBOCl:Eu phosphor with high color purity (94.11%) has been synthesized.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Chemistry,, and Health Research Institute, Michigan Technological University Houghton Michigan 49931 USA
The longest oligos that can be chemically synthesized are considered to be 200-mers. Here, we report direct synthesis of an 800-mer green fluorescent protein gene and a 1728-mer 29 DNA polymerase gene on an automated synthesizer. Key innovations that enabled this breakthrough include conducting the synthesis on a smooth surface rather than within the pores of traditional supports, and the use of the powerful catching-by-polymerization (CBP) method for isolating the full-length oligos from a complex mixture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!