Background: Postmenopausal women are more prone to develop muscle weakness, which is strongly associated with impairment of mitochondrial function in skeletal muscle. This study aimed to examine the impact of a passive exercise modality, whole-body vibration training (WBVT), on muscle mitochondrial function in ovariectomized (OVX) mice, in comparison with 17β-estradiol (E) replacement.

Methods: Female C57BL/6J mice were assigned to four groups: sham operation control group (Sham), ovariectomized group (OVX), OVX with E supplement group (OVX+E), and OVX with WBVT group (OVX+W). The estrous cycle, body weight, body composition, and muscle strength of the mice were monitored after the operation. Serum E level was assessed by enzyme-linked immunosorbent assay (ELISA). The ATP levels were determined using a luciferase-catalyzed bioluminescence assay. The activity of mitochondrial respiration chain complexes was evaluated using high-resolution respirometry (O2K). Expression levels of oxidative phosphorylation (OXPHOS), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), and mitochondrial transcription factor A (TFAM) were detected using western blotting.

Results: We observed decreased muscle strength and impaired mitochondrial function in the skeletal muscle of OVX mice. The vibration training alleviated these impairments as much as the E supplement. In addition, the vibration training was superior to the ovariectomy and the estradiol replacement regarding the protein expression of PGC-1α and TFAM.

Conclusion: WBVT improves the OVX-induced decline in muscle strength and impairment of mitochondrial function in the skeletal muscle. This passive exercise strategy may be useful as an alternative to E replacement for preventing menopausal muscular weakness. Further studies are needed to understand the effects of WBVT on various physiological systems, and precautions should be taken when implementing it in patient treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864566PMC
http://dx.doi.org/10.3389/fendo.2024.1356312DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
16
mitochondrial function
16
passive exercise
12
function skeletal
12
vibration training
12
muscle strength
12
muscle
9
impairment mitochondrial
8
ovx mice
8
mitochondrial
7

Similar Publications

Aim: To comprehensively investigate the effects of antioxidant nutrients on muscle mass, strength and function in chronic obstructive pulmonary disease (COPD) patients.

Methods: PubMed, Embase, Cochrane Library, and Web of Science were comprehensively searched from the inception to January 3, 2024. The quality of randomized controlled trials (RCTs) was measured using the Jadad scale.

View Article and Find Full Text PDF

Knee exoskeletons have been developed to assist, stabilize, or improve human movement or recovery. However, exoskeleton designers must implement transparency (i.e.

View Article and Find Full Text PDF

The purpose was to assess whether visual feedback of torque contributes to motor unit (MU) firing rate reduction observed during post-activation potentiation (PAP) of skeletal muscle. From 15 participants 23 MUs were recorded with intramuscular fine-wire electrodes from the tibialis anterior during isometric dorsiflexion contractions at 20% of maximum, with and without both PAP and visual feedback of torque. A 5s maximal voluntary contraction (MVC) was used to induce PAP, and evoked twitch responses were assessed before and after.

View Article and Find Full Text PDF

Pathogenic variants in HMGCR were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern.

View Article and Find Full Text PDF

Syncopal reactions in blood donors: Pathophysiology, clinical course, and features.

Asian J Transfus Sci

September 2022

Department of Physiology, Mahatma Gandhi Medical College, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India.

Vasovagal syncope (VVS) in donors is a transient loss of consciousness due to short-term global cerebral hypoperfusion, which has a rapid onset and has complete spontaneous recovery. VVS may be triggered by pain, fear, anxiety, or emotional upset and loss of blood perse. It is an exaggeration of an adaptive response meant to assist in reducing the amount of bleeding/loss of blood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!