Gold nanoparticles (GNPs) are essential in creating conductive inks vital for advancing printable electronics, sensing technologies, catalysis, and plasmonics. A crucial step in fabricating useful GNP-based devices is understanding the thermal sintering process and particularly the decomposition pathways of ligands in different environments. This study addresses a gap in the existing research by examining the sintering of oleylamine (OA)-capped GNPs in both ambient (air) and inert (N) environments. Through a series of analyses including TGA/MS, Raman spectroscopy, and XPS, distinctive OA decomposition behaviors were identified in air and nitrogen environments. The research delineates two OA decomposition pathways resulting in different porosity, microstructure, and electrical conductivity of GNP films sintered in air and nitrogen environments. The study offers some insights that can steer the sintering and utilization of the GNP sintering process and promises to aid the future development of nanoparticle-based printable electronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862381 | PMC |
http://dx.doi.org/10.1021/acsanm.3c04803 | DOI Listing |
Materials (Basel)
January 2025
School of Materials Science & Engineering, Pusan National University, Busan 46241, Republic of Korea.
In this study, cordierite-based ceramics (2MgO·2AlO·5SiO) were synthesized using high-purity MgO, AlO, and SiO as starting materials. The influence of the MgO/AlO ratio on various properties, including the thermal behavior, pyrometric cone refractory behavior, phase formation, physical properties, and microstructure of the synthesized ceramics, was systematically analyzed. Increasing the MgO/AlO ratio progressively weakened the cordierite network, leading to lower temperatures for liquid formation and melting.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China.
Electron-trapping materials have attracted a lot of attention in the field of optical data storage. However, the lack of suitable trap levels has hindered its development and application in the field of optical data storage. Herein, LuAlO:Ce fluorescent ceramics were developed as the optical storage medium, and high-temperature vacuum sintering induced the formation of deep traps (1.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, China.
Cu/Diamond (Cu/Dia) composites are regarded as next-generation thermal dissipation materials and hold tremendous potential for use in future high-power electronic devices. The interface structure between the Cu matrix and the diamond has a significant impact on the thermophysical properties of the composite materials. In this study, Cu/Dia composite materials were fabricated using the Spark Plasma Sintering (SPS) process.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Universitaetsstrasse 9, 95447 Bayreuth, Germany.
High Speed Sintering (HSS) is an additive manufacturing process with great potential to produce complex, high-quality polymer parts on an industrial scale. However, little information is currently available on the characteristics of the powder materials used and the part properties that can be achieved. This is also the case for the standard material polyamide 12 (PA 12) and the first commercially available HSS machine, the VX200 HSS.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy.
The paper highlights the realization of 3D-printed parts with complex geometries, such as chess-like pieces, using polyamide 12 (PA12) as polymeric powder via selective laser sintering (SLS). The research activity focuses on the study of the powder printability, the optimization of the printing parameters, and the tomographic evaluation of the printed objects. Morphological analyses were carried out to study the PA12 powder microstructure considering that SLS required specific particle size distribution and shape, able to guarantee a good flowability necessary to take part in a sintering process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!