A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermodynamics, Environmental and Sustainability Impacts of a Turbofan Engine Under Different Design Conditions Considering Variable Needs in the Aviation Industry. | LitMetric

In this study, thermodynamic analysis is implemented to the kerosene-fuelled high by-pass turbofan (HBP-TF) engine to assess entropy, exergy, environmental, and sustainability metrics for different design variables such as pressure ratio of high-pressure compressor (HPC-PR) ranging from 7.5 to 8.5 and turbine inlet temperature (TIT) varying from 1400 to 1525 K considering variable needs in the aviation industry. As a novelty, entropic improvement potential (EIP) index for turbomachinery components and specific irreversibility production for the whole engine are calculated. Sustainability-based parameters for different cases are compared with the baseline values of the HBP-TF engine. The combustor has the highest entropy production of 44.4425 kW K at the baseline. The higher TIT increases the entropy production of the combustor by 16.56%, whereas the higher HPC-PR decreases it by 5.83%. The higher TIT and HPC-PR favorably affect the sustainable efficiency factor of the engine, which is observed as 1.5482 at baseline and increases by 4.5% and 0.058% with the increment of TIT and HPC-PR, respectively. The higher TIT and higher HPC-PR results in lowering sustainability of the engine. The specific irreversibility production of the engine decreases by 3.78% and 0.1171% respectively, as TIT and HPC-PR reach the highest point considered in the study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862188PMC
http://dx.doi.org/10.1002/gch2.202300205DOI Listing

Publication Analysis

Top Keywords

higher tit
12
tit hpc-pr
12
environmental sustainability
8
considering variable
8
variable aviation
8
aviation industry
8
hbp-tf engine
8
specific irreversibility
8
irreversibility production
8
production engine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!