Smart gas-sensor devices are of crucial importance for emerging consumer electronics and Internet-of-Things (IoT) applications, in particular for indoor and outdoor air quality monitoring (, CO levels) or for detecting pollutants harmful for human health. Chemoresistive nanosensors based on metal-oxide semiconductors are among the most promising technologies due to their high sensitivity and suitability for scalable low-cost fabrication of miniaturised devices. However, poor selectivity between different target analytes restrains this technology from broader applicability. This is commonly addressed by chemical functionalisation of the sensor surface catalytic nanoparticles. Yet, while the latter led to significant advances in gas selectivity, nanocatalyst decoration with precise size and coverage control remains challenging. Here, we present CMOS-integrated gas sensors based on tin oxide (SnO) films deposited by spray pyrolysis technology, which were functionalised with platinum (Pt) nanocatalysts. We deposited size-selected Pt nanoparticles (narrow size distribution around 3 nm) by magnetron-sputtering inert-gas condensation, a technique which enables straightforward surface coverage control. The resulting impact on SnO sensor properties for CO and volatile organic compound (VOC) detection functionalisation was investigated. We identified an upper threshold for nanoparticle deposition time above which increased surface coverage did not result in further CO or VOC sensitivity enhancement. Most importantly, we demonstrate a method to adjust the selectivity between these target gases by simply adjusting the Pt nanoparticle deposition time. Using a simple computational model for nanocatalyst coverage resulting from random gas-phase deposition, we support our findings and discuss the effects of nanoparticle coalescence as well as inter-particle distances on sensor functionalisation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10863709PMC
http://dx.doi.org/10.1039/d3na00552fDOI Listing

Publication Analysis

Top Keywords

surface coverage
12
nanocatalyst decoration
8
gas sensors
8
selectivity target
8
coverage control
8
nanoparticle deposition
8
deposition time
8
coverage
5
adjusting surface
4
coverage nanocatalyst
4

Similar Publications

Given the inherent challenges of the CO electroreduction (COER) reaction, solely from CO and HO, it is desirable to develop selective product formation pathways. This can be achieved by designing multimetallic nanocomposites that provide optimal CO coverage, allowing for tunability in the product formation. In this work, Ag and Zn codoped-SrTiO (ZAST) composite immobilized carbon black (CB)-modified GCE working electrode (ZAST@CB/GCE) was developed for the electrochemical conversion of CO to multicarbon products.

View Article and Find Full Text PDF

Motivation: Bispecific antibodies (bsAbs) that bind to two distinct surface antigens on cancer cells are emerging as an appealing therapeutic strategy in cancer immunotherapy. However, considering the vast number of surface proteins, experimental identification of potential antigen pairs that are selectively expressed in cancer cells and not in normal cells is both costly and time-consuming. Recent studies have utilized large bulk RNA-seq databases to propose bispecific targets for various cancers.

View Article and Find Full Text PDF

MAI-TargetFisher: A proteome-wide drug target prediction method synergetically enhanced by artificial intelligence and physical modeling.

Acta Pharmacol Sin

January 2025

Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.

Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantially. This progress inspired the development of the first genome-wide small molecule targets scanning method.

View Article and Find Full Text PDF

The influence of coadsorbed ions on adsorbate diffusion, an inherent effect at solid-liquid interfaces, was studied for adsorbed sulfur on Ag(100) electrodes in the presence of bromide or iodide. Quantitative in situ high-speed scanning tunnelling microscopy (video-STM) measurements were performed both in the potential regime of the c(2×2) halide adlayer at its saturation coverage and in the regime of a disordered adlayer where the halide coverage increases with potential. These studies reveal a surprising non-monotonic potential dependence of Sad diffusion with an initial increase with halide coverage, followed by a decrease upon halide adlayer ordering into the c(2×2) structure.

View Article and Find Full Text PDF

Far-Ultraviolet Plexciton Formation in Water-Covered Indium Clusters.

J Phys Chem Lett

January 2025

Department of Nature and Environment, Faculty of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan.

In this work, we study the plexciton in the far-ultraviolet region formed between indium nanoclusters and water molecules. The indium clusters are fabricated on graphene under ultrahigh vacuum conditions and show a strong localized surface plasmon polariton (LSP) absorption band at 6-7 eV. Adsorption of water molecules onto the clusters at 115 K induces a band splitting larger than 1 eV, indicating a strong coupling between the LSP and water 4a ← 1b transition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!