AI Article Synopsis

  • Parkinson's Disease (PD) is a common neurodegenerative disorder where early diagnosis is vital for effective treatment, and recent advancements in Machine Learning (ML) and Deep Learning (DL) show promise in enhancing diagnosis accuracy.
  • The review analyzes various ML and DL algorithms applied to datasets like voice, handwriting, and wave spirals, emphasizing their role in clinical decision-making and potential biomarker identification.
  • The paper aims to be a guide for future research in developing ML and DL tools for PD detection, ultimately benefiting both researchers and healthcare professionals in improving patient outcomes.

Article Abstract

Parkinson's Disease (PD) is a prevalent neurodegenerative disorder with significant clinical implications. Early and accurate diagnosis of PD is crucial for timely intervention and personalized treatment. In recent years, Machine Learning (ML) and Deep Learning (DL) techniques have emerged as promis-ing tools for improving PD diagnosis. This review paper presents a detailed analysis of the current state of ML and DL-based PD diagnosis, focusing on voice, handwriting, and wave spiral datasets. The study also evaluates the effectiveness of various ML and DL algorithms, including classifiers, on these datasets and highlights their potential in enhancing diagnostic accuracy and aiding clinical decision-making. Additionally, the paper explores the identifi-cation of biomarkers using these techniques, offering insights into improving the diagnostic process. The discussion encompasses different data formats and commonly employed ML and DL methods in PD diagnosis, providing a comprehensive overview of the field. This review serves as a roadmap for future research, guiding the development of ML and DL-based tools for PD detection. It is expected to benefit both the scientific community and medical practitioners by advancing our understanding of PD diagnosis and ultimately improving patient outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865258PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e25469DOI Listing

Publication Analysis

Top Keywords

machine learning
8
learning deep
8
deep learning
8
parkinson's disease
8
diagnosis
5
review machine
4
learning
4
learning algorithms
4
algorithms parkinson's
4
disease detection
4

Similar Publications

This study introduces a high-resolution wind nowcasting model designed for aviation applications at Madeira International Airport, a location known for its complex wind patterns. By using data from a network of six meteorological stations and deep learning techniques, the produced model is capable of predicting wind speed and direction up to 30-minute ahead with 1-minute temporal resolution. The optimized architecture demonstrated robust predictive performance across all forecast horizons.

View Article and Find Full Text PDF

Urban waterfront areas, which are essential natural resources and highly perceived public areas in cities, play a crucial role in enhancing urban environment. This study integrates deep learning with human perception data sourced from street view images to study the relationship between visual landscape features and human perception of urban waterfront areas, employing linear regression and random forest models to predict human perception along urban coastal roads. Based on aesthetic and distinctiveness perception, urban coastal roads in Xiamen were classified into four types with different emphasis and priorities for improvement.

View Article and Find Full Text PDF

Stock price prediction is a challenging research domain. The long short-term memory neural network (LSTM) widely employed in stock price prediction due to its ability to address long-term dependence and transmission of historical time signals in time series data. However, manual tuning of LSTM parameters significantly impacts model performance.

View Article and Find Full Text PDF

Decoding the elite soccer player's psychological profile.

Proc Natl Acad Sci U S A

January 2025

Center for Psychiatry Research and Center for Cognitive and Computational Neuropsychiatry, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.

Soccer is arguably the most widely followed sport worldwide, and many dream of becoming soccer players. However, only a few manage to achieve this dream, which has cast a significant spotlight on elite soccer players who possess exceptional skills to rise above the rest. Originally, such attention was focused on their great physical abilities.

View Article and Find Full Text PDF

Previous studies have highlighted the inherent subjectivity, complexity, and challenges associated with research quality leading to fragmented findings. We identified determinants of research publication quality in terms of research activities and the use of information and communication technologies by employing an interdisciplinary approach. We conducted web-based surveys among academic scientists and applied machine learning techniques to model behaviors during and after the COVID-19 pandemic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!