Objective: RNA-binding proteins (RBPs) have been recently proven to be involved in the pathogenesis of several diseases. However, few studies elaborated RBPs in regulating osteoarthritis. This study aims to define the function and mechanism of RBPs-PUM2 in chondrocyte apoptosis during osteoarthritis.

Methods: Cartilage tissue samples and human juvenile chondrocyte cell line C28/I2 were collected for further study. PUM2 expression in the human tissues and cells was determined using qRT-PCR. Chondrocyte viability and apoptosis were determined by MTT and flow cytometry. ROS generation was determined by flow cytometry. The regulation of PUM2 on FOXO3 translation was evaluated by RNA immunoprecipitation, RNA pull-down, and Luciferase gene reporter analysis.

Results: PUM2 is upregulated in both cartilage tissue of osteoarthritis patients and IL-1β-stimulated chondrocytes. PUM2 overexpression reduces cell viability and promotes cell apoptosis and ROS generation of chondrocytes. PUM2 silencing increases cell viability and ameliorates cell apoptosis as well as ROS generation in chondrocytes induced by IL-1β. PUM2 inhibits FOXO3 expression via binding its mRNA 3'-UTR. PUM2 forms a signaling axis with FOXO3 in IL-1β induced chondrocyte damage.

Conclusion: PUM2 is upregulated in cartilage tissue of osteoarthritis and positively regulates chondrocytes apoptosis through controlling FOXO3 protein expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865267PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e25080DOI Listing

Publication Analysis

Top Keywords

cartilage tissue
12
ros generation
12
pum2
9
foxo3 expression
8
flow cytometry
8
pum2 upregulated
8
upregulated cartilage
8
tissue osteoarthritis
8
chondrocytes pum2
8
cell viability
8

Similar Publications

Introduction: Laryngeal chondrosarcoma (CS) is a rare indolent malignant tumor. High-grade (G3), dedifferentiated (DD), and myxoid (MY) CSs are considered more aggressive subtypes due to their metastatic potential and relatively poor outcomes. The aim of this systematic review is to evaluate treatment modalities and survival outcomes in patients affected by these rarer CS subtypes.

View Article and Find Full Text PDF

Background: Mismatch between osteochondral allograft (OCA) donor and recipient sex has been shown to negatively affect outcomes. This study accounts for additional donor variables and clinically relevant outcomes.

Purpose: To evaluate whether donor sex, age, donor-recipient sex mismatch, and duration of graft storage affect clinical outcomes and failure rates after knee OCA transplantation.

View Article and Find Full Text PDF

Background: Knee injuries resulting in purely cartilaginous defects are rare, and controversy remains regarding the reliability of chondral-only fixation.

Purpose: To systematically review the literature for fixation methods and outcomes after primary fixation of chondral-only defects within the knee.

Study Design: Systematic review; Level of evidence, 5.

View Article and Find Full Text PDF

Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.

View Article and Find Full Text PDF

This study aimed to determine the incidence of traumatic dental injuries (TDIs) during oral tracheal intubation by traditional laryngoscopy in general anesthesia (GA) in pediatric patients aged 4-13 and the correlated risk factors in Damascus, Syria. The study included children at the Department of General Surgery, Damascus University. Each child was examined before, during, and after 12-24 h of entering the operation room.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!