High-intensity femtosecond pulses from an X-ray free-electron laser enable pump-probe experiments for the investigation of electronic and nuclear changes during light-induced reactions. On timescales ranging from femtoseconds to milliseconds and for a variety of biological systems, time-resolved serial femtosecond crystallography (TR-SFX) has provided detailed structural data for light-induced isomerization, breakage or formation of chemical bonds and electron transfer. However, all ultrafast TR-SFX studies to date have employed such high pump laser energies that nominally several photons were absorbed per chromophore. As multiphoton absorption may force the protein response into non-physiological pathways, it is of great concern whether this experimental approach allows valid conclusions to be drawn vis-à-vis biologically relevant single-photon-induced reactions. Here we describe ultrafast pump-probe SFX experiments on the photodissociation of carboxymyoglobin, showing that different pump laser fluences yield markedly different results. In particular, the dynamics of structural changes and observed indicators of the mechanistically important coherent oscillations of the Fe-CO bond distance (predicted by recent quantum wavepacket dynamics) are seen to depend strongly on pump laser energy, in line with quantum chemical analysis. Our results confirm both the feasibility and necessity of performing ultrafast TR-SFX pump-probe experiments in the linear photoexcitation regime. We consider this to be a starting point for reassessing both the design and the interpretation of ultrafast TR-SFX pump-probe experiments such that mechanistically relevant insight emerges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881388PMC
http://dx.doi.org/10.1038/s41586-024-07032-9DOI Listing

Publication Analysis

Top Keywords

pump laser
16
pump-probe experiments
12
ultrafast tr-sfx
12
tr-sfx pump-probe
8
laser
5
ultrafast
5
influence pump
4
laser fluence
4
fluence ultrafast
4
ultrafast myoglobin
4

Similar Publications

New treatments for glaucoma.

Curr Opin Ophthalmol

January 2025

New York Eye Surgery Center, New York City, New York, USA.

Purpose Of Review: This review highlights new Federal Drug Administration (FDA) approved glaucoma treatments to familiarize providers with immediately available options.

Recent Findings: New FDA-approved treatments include the bimatoprost implant, travoprost implant, direct selective laser trabeculoplasty (DSLT), and ocular pressure adjusting pump. The bimatoprost implant is approved for a single administration with effects lasting for about 1 year, as opposed to the nearly 3-year effect for the travoprost implant.

View Article and Find Full Text PDF

Frequency-domain thermoreflectance with beam offset without the spot distortion for accurate thermal conductivity measurement of anisotropic materials.

Rev Sci Instrum

January 2025

Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura C3, Nishikyo-ku, Kyoto 615-8540, Japan.

The measurement of thermal conductivities of anisotropic materials and atomically thin films is pivotal for the thermal design of next-generation electronic devices. Frequency-domain thermoreflectance (FDTR) is a pump-probe technique that is known for its accurate and straightforward approach to determining thermal conductivity and stands out as one of the most effective methodologies. Existing research has focused on advancing a measurement system that incorporates beam-offset FDTR.

View Article and Find Full Text PDF

We present an active alignment and stabilization control system for laser setups based on a thin-disk regenerative amplifier. This method eliminates power and pointing instability during the warm-up period and improves long-term stability throughout the entire operation. The alignment method is based on a four-mirror control system consisting of two motorized mirrors placed within the regenerative amplifier cavity, two additional motorized mirrors external to the amplifier cavity, and four camera detectors.

View Article and Find Full Text PDF

Na-K-ATPase/GLT-1 interaction participates in EGCG protection against cerebral ischemia-reperfusion injury in rats.

Phytomedicine

December 2024

Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China. Electronic address:

Background: In China, stroke is the primary cause of adult death and disability. Because of the increased rate of blood vessel reperfusion, it is important to prevent cerebral ischemia-reperfusion injury, in which glutamate (Glu) excitotoxicity plays a critical role. The most important Glu transporter, GLT-1, is essential for the regulation of Glu, which is dependent on Na-K-ATPase (NKA)-induced ion concentration gradient differences.

View Article and Find Full Text PDF

Theoretical basis of all-optical modulation of a probe laser beam due to photothermal modulation of the aggregation state in organic dyes, with experimental proof of the principle.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Anhembi Morumbi University (UAM), Rodovia Dr Altino Bondensan 500, São José dos Campos 12247-016, SP, Brazil; Center of Innovation, Technology and Education (CITE), Rodovia Dr Altino Bondensan 500, São José dos Campos 12247-016, SP, Brazil. Electronic address:

The inherent potential for self-assembly is a well-known attribute of organic dye molecules. This work takes advantage of the changes in dye photochemical and photophysical properties produced by the aggregation phenomenon, to investigate the behavior of all-optical modulation in molecular aggregates. The theoretical principles for a dual beam all-optical modulation, as well as the conception of an optical logic gate by exploring the aggregation phenomenon are discussed throughout the article.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!