A highly sensitive electrochemical sensor is reported that employs a modified electrode for the precise measurement of cabotegravir, a potent anti-HIV drug. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) were utilized for this purpose. Electrode modification involved the immobilization of CrAlC MAX phase/g-CN onto a glassy carbon electrode (GCE) to enhance its electrocatalytic activity and selectivity for cabotegravir detection. Under the optimal experimental conditions, the working potential (vs. Ag/AgCl) was to 0.93 V. The developed sensor exhibited a good linear relationship in the range 0.05 µM to 9.34 µM with a low limit of detection of 4.33 nM, signifying its exceptional sensitivity. Additionally, it demonstrated successful cabotegravir detection in pharmaceutical formulations and biological samples, achieving an RSD below 3.0%. The recoveries fell within the range 97.7 to 102%, confirming the sensor's potential for real-sample applications. This innovative electrochemical sensor represents a significant advancement, providing a simple, reliable, and sensitive tool for the accurate measurement of cabotegravir. Its potential applications include optimizing drug dosages, monitoring treatment responses, and supporting the development of cabotegravir-based pharmaceutical products, thereby contributing to advancements in HIV therapy and prevention strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-024-06207-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!