Immunostaining in lungs of patients who died with COVID-19 infection showed increased intensity and distribution of chondroitin sulfate and decline in N-acetylgalactostamine-4-sulfatase (Arylsulfatase B; ARSB). To explain these findings, human small airway epithelial cells were exposed to the SARS-CoV-2 spike protein receptor binding domain (SPRBD) and transcriptional mechanisms were investigated. Phospho-p38 MAPK and phospho-SMAD3 increased following exposure to the SPRBD, and their inhibition suppressed the promoter activation of the carbohydrate sulfotransferases CHST15 and CHST11, which contributed to chondroitin sulfate biosynthesis. Decline in ARSB was mediated by phospho-38 MAPK-induced N-terminal Rb phosphorylation and an associated increase in Rb-E2F1 binding and decline in E2F1 binding to the ARSB promoter. The increases in chondroitin sulfotransferases were inhibited when treated with phospho-p38-MAPK inhibitors, SMAD3 (SIS3) inhibitors, as well as antihistamine desloratadine and antibiotic monensin. In the mouse model of carrageenan-induced systemic inflammation, increases in phospho-p38 MAPK and expression of CHST15 and CHST11 and declines in DNA-E2F binding and ARSB expression occurred in the lung, similar to the observed effects in this SPRBD model of COVID-19 infection. Since accumulation of chondroitin sulfates is associated with fibrotic lung conditions and diffuse alveolar damage, increased attention to p38-MAPK inhibition may be beneficial in ameliorating Covid-19 infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866996PMC
http://dx.doi.org/10.1038/s41392-024-01741-3DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 spike
8
carbohydrate sulfotransferases
8
covid-19 infection
8
chondroitin sulfate
8
phospho-p38 mapk
8
chst15 chst11
8
binding arsb
8
spike protein-ace2
4
protein-ace2 interaction
4
interaction increases
4

Similar Publications

We investigated whether antibody concentrations measured in plasma using the Roche Elecsys® Anti-SARS-CoV-2 S assay (targeting the receptor binding domain, RBD) could estimate levels of Wuhan-Hu-1 and Omicron XBB.1.5 spike-directed antibodies with neutralizing ability (NtAb) or those mediating NK-cell activity.

View Article and Find Full Text PDF

Objectives: We assessed the transmission of SARS-CoV-2 and vaccine receipt in a representative sample of wet market workers in a highly dense, low-income setting. Wet markets are key in many Asian settings, including Dhaka, Bangladesh, for fresh food, including animal protein.

Methods: During early 2022, we assessed the prevalence of anti-SARS-CoV-2 antibodies in a random sample of poultry and vegetable workers in 15 wet markets, and investigated associations with socio-demographic characteristics and COVID-19 vaccination.

View Article and Find Full Text PDF

Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.

View Article and Find Full Text PDF

The COVID-19 pandemic has underscored the urgent need for antiviral agents capable of targeting a broad range of coronaviruses, including emerging variants of SARS-CoV-2. While vaccines have been pivotal, the search for drugs that can prevent viral entry into host cells remains crucial, especially against evolving viral forms and other coronaviruses. In this study, we investigated natural products as a source of antiviral agents, focusing on their potential to block the spike protein's receptor-binding domain (RBD).

View Article and Find Full Text PDF

Risk impact of SARS-CoV-2 coronavirus and spike protein on cardiac tissue: a comprehensive review.

Physiol Res

December 2024

Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.

The global COVID-19 pandemic, caused by SARS-CoV-2, has led to significant morbidity and mortality, with a profound impact on cardiovascular health. This review investigates the mechanisms of SARS-CoV-2's interaction with cardiac tissue, particularly emphasizing the role of the Spike protein and ACE2 receptor in facilitating viral entry and subsequent cardiac complications. We dissect the structural features of the virus, its interactions with host cell receptors, and the resulting pathophysiological changes in the heart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!