Besides tryptamine (1) and secologanin (2), non-cognate substrates also undergo a Pictet-Spengler reaction (PSR) catalyzed by strictosidine synthases (STR) with differing catalytic properties. We characterized the bisubstrate binding aspect of catalysis - order, affinity, and cooperativity - with STR orthologs from Rauvolfia serpentina (RsSTR) and Ophiorrhiza pumila (OpSTR) by an isothermal titration calorimetry (ITC) based 'proxy approach' that employed a non-reactive tryptamine analog (m1) to capture its inert ternary complexes with STRs and (2). ITC studies with OpSTR and (2) revealed 'tryptamine-first' cooperative binding with (1) and a simultaneous cooperative binding with (m1). Binding cooperativity among (m1) and (2) towards OpSTR was higher than RsSTR. Crystallographic study of RsSTR-(m1) complex helped to understand the unreactive binding of (m1) in terms of orientation and interactions in the RsSTR pocket. PSR with (m1) was revealed to be energetically unfeasible by the density functional theory (DFT) scans of the first hydrogen abstraction by RsSTR. The effect of pH on the bisubstrate binding to OpSTR was deciphered by molecular dynamics simulations (MDS), which also provided a molecular basis for the stability of complex of OpSTR with (m1) and (2). Therefore, we investigated STRs from a substrate binding perspective to inform drug-design and rational enzyme engineering efforts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.130091 | DOI Listing |
Metab Eng
November 2024
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark. Electronic address:
Hortic Res
September 2024
Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China.
iScience
May 2024
State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China.
of the Apocynaceae family is a medicinal plant with a rich source of bioactive monoterpenoid indole alkaloids (MIAs), which possess anti-cancer activity like vinca alkaloids. To gain genomic insights into MIA biosynthesis, we assembled a high-quality chromosome-level genome for using nanopore and Hi-C data. The 444.
View Article and Find Full Text PDFPlants (Basel)
March 2024
Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico 07360, Mexico.
(Rubiaceae), known as firebush, is a source of bioactive monoterpenoid oxindole alkaloids (MOAs) derived from monoterpenoid indole alkaloids (MIAs). With the aim of understanding the regulation of the biosynthesis of these specialized metabolites, micropropagated plants were elicited with jasmonic acid (JA) and salicylic acid (SA). The MOA production and MIA biosynthetic-related gene expression were evaluated over time.
View Article and Find Full Text PDFBMC Plant Biol
April 2024
School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
Background: Many parasitic plants of the genera Striga and Cuscuta inflict huge agricultural damage worldwide. To form and maintain a connection with a host plant, parasitic plants deploy virulence factors (VFs) that interact with host biology. They possess a secretome that represents the complement of proteins secreted from cells and like other plant parasites such as fungi, bacteria or nematodes, some secreted proteins represent VFs crucial to successful host colonisation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!