A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication and characterization of poly(lactic acid-trimethylene carbonate) based biodegradable composite films. | LitMetric

Fabrication and characterization of poly(lactic acid-trimethylene carbonate) based biodegradable composite films.

Int J Biol Macromol

National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China. Electronic address:

Published: March 2024

Two biobased composite films have been prepared with poly (lactic acid-trimethylene carbonate), polylactic acid and Laponite by solvent evaporation method. The H NMR and FTIR spectrums illustrate that P (LA-TMC) polymer is successfully synthesized and designed composite films are produced. Morphometric analyses demonstrate that the roughnesses of the film's surface and cross-section are on the increase with higher PLA and Laponite content. Mechanical performances reveal that the rise in tensile strength and modulus while maintaining excellent elongation at break is mainly due to the increase in the content of polylactic acid and Laponite. By utilizing the nano effect of Laponite, the maximum tensile strength of the composite film reaches 34.59 MPa. Thermal property results illustrate that the Tg and initial decomposition temperature are on the growth with the increase of PLA content. However, it is not significant on the effect of Laponite on the initial decomposition temperature. The water vapor permeability measurements prove that the barrier property of P(LA-TMC)/PLA/Laponite composite film is on the ascent with the Laponite addition. Hydrolytic degradation tests indicate that PLA and Laponite play avital part in accelerating the degradation rate of composite films and alkaline media is superior acidic and neutral conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.130148DOI Listing

Publication Analysis

Top Keywords

composite films
16
acid-trimethylene carbonate
8
polylactic acid
8
acid laponite
8
pla laponite
8
tensile strength
8
composite film
8
initial decomposition
8
decomposition temperature
8
laponite
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!