Spatiotemporal characteristics of meteorological drought events in 34 major global river basins during 1901-2021.

Sci Total Environ

State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Published: April 2024

Meteorological drought is a crucial driver of various types of droughts; thus, identifying the spatiotemporal characteristics of meteorological drought at the basin scale has implications for ecological and water resource security. However, differences in drought characteristics between river basins have not been clearly elucidated. In this study, we identify and compare meteorological drought events in 34 major river basins worldwide using a three-dimensional drought-clustering algorithm based on the standardised precipitation evapotranspiration index on a 12-month scale from 1901 to 2021. Despite synchronous increases in precipitation and potential evapotranspiration (PET), with precipitation increasing by more than three times the PET, 47 % (16/34) of the basins showed a tendency towards drought in over half their basin areas. Drought events occurred frequently, with more than half identified as short-term droughts (lasting less than or equal to three months). Small basins had a larger drought impact area, with major drought events often originating from the basin boundaries and migrating towards the basin centre. Meteorological droughts were driven by changes in sea surface temperature (SST), especially the El Niño Southern Oscillation (ENSO) or other climate indices. Anomalies in SST and atmospheric circulation caused by ENSO events may have led to altered climate patterns in different basins, resulting in drought events. These results provide important insights into the characteristics and mechanisms of meteorological droughts in different river basins worldwide.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.170913DOI Listing

Publication Analysis

Top Keywords

drought events
20
meteorological drought
16
river basins
16
drought
10
spatiotemporal characteristics
8
characteristics meteorological
8
events major
8
basins worldwide
8
meteorological droughts
8
basins
7

Similar Publications

Pedunculate oak ( L.) is widely distributed across Europe and serves critical ecological, economic, and recreational functions. Investigating its responses to stressors such as drought, extreme temperatures, pests, and pathogens provides valuable insights into its capacity to adapt to climate change.

View Article and Find Full Text PDF

SQUAMOSA promoter-binding protein-like (SPL) transcription factors play a critical role in the regulation of gene expression and are indispensable in orchestrating plant growth and development while also improving resistance to environmental stressors. Although it has been identified across a wide array of plant species, there have been no comprehensive studies on the gene family in centipedegrass [ (Munro) Hack.], which is an important warm-season perennial C4 turfgrass.

View Article and Find Full Text PDF

A genome-wide-level insight into the HSF gene family of Rhodomyrtus tomentosa and the functional divergence of RtHSFA2a and RtHSFA2b in thermal adaptation.

Plant Physiol Biochem

December 2024

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Heat shock transcription factor (HSF) is one of the most important regulatory elements in plant development and stress response. Rhohomyrtus tomentosa has many advantages in adapting to high temperature and high humidity climates, whereas its inherence has barely been elucidated. In this study, we aimed to characterize the HSF family and investigate the thermal adaptation mechanisms of R.

View Article and Find Full Text PDF

Anthropogenically induced climate change has significantly increased the frequency of acute weather events, such as drought. As human activities amplify environmental stresses, animals may be forced to prioritize survival over behaviors less crucial to immediate fitness, such as socializing. Yet, social bonds may also enable individuals to weather the deleterious effects of environmental conditions.

View Article and Find Full Text PDF

Unraveling climate change-induced compound low-solar-low-wind extremes in China.

Natl Sci Rev

January 2025

College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.

China's pursuit of carbon neutrality targets hinges on a profound shift towards low-carbon energy, primarily reliant on intermittent and variable, yet crucial, solar and wind power sources. In particular, low-solar-low-wind (LSLW) compound extremes present a critical yet largely ignored threat to the reliability of renewable electricity generation. While existing studies have largely evaluated the impacts of average climate-induced changes in renewable energy resources, comprehensive analyses of the compound extremes and, particularly, the underpinning dynamic mechanisms remain scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!