Dual-state emission (DSE) is an emerging phenomenon wherein organic luminescent molecules display bright emissions in both molecularly isolated and packed states, addressing the challenge associated with the traditional paradigm of dyes with mono-state emission. This study presents the design and synthesis of two unsymmetrical triads, TPCA and TPCT, featuring a D-π-A-D' electronic structure by integrating phenothiazines, triphenylamines, and cyanostilbene. Photophysical assessments reveal that both molecules serve as robust DSEgens, exhibiting strong emissions in both solution and solid phases. TPCA displays Φ 53.2% and Φ 43.2%, while TPCT exhibits Φ 49.6% and Φ 37.5%. However, due to differences in molecular conformation and packing, they diverge in solid-state emission wavelengths and mechanofluorochromic behavior. In the solid state, TPCA emits strong red fluorescence, contrasting with TPCT, which emits orange fluorescence. Furthermore, TPCA demonstrates significant mechanofluorochromism (MFC), shifting from yellow to yellow-red upon mechanical grinding, while TPCT exhibits negligible MFC owing to conformational distinctions. As robust and low-toxic bioimaging agents, both TPCA and TPCT prove highly effective for lipid-droplet imaging studies. This research contributes valuable insights to the evolving field of DSE materials, elucidating the promising applications and mechanisms governing their versatile emission behaviors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.124014 | DOI Listing |
Herein, we present a strategy to access a novel class of pH-responsive, dual-state emissive (DSE), highly fluorescent pyrrole-based chromophores diformylation of dipyrroethenes (DPE) followed by condensation with various aniline derivatives. The DPE-based chromophores exhibit a large Stokes shift and maintain good fluorescence quantum yields. Remarkably, these chromophores demonstrate reversible colourimetric changes and a fluorometric 'on-off-on' switch in response to pH variations.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Department of Chemistry, College of Science, University of Sulaimani, Qliasan St. 46002, Sulaymaniyah, Kurdistan Region, Iraq.
An efficient dual-state blue-emitting zinc-based metal-organic frameworks (MOFs), designated as UoZ-8 has been developed. Coordination-induced emission causes the UoZ-8 to give the blue emission in both solid and dispersed form in liquid. Upon the addition of tetracycline (TC), a noticeable shift from blue emission to greenish-yellow emission occurred, with a marked increase in intensity, which was attributed to the inner filter effect accompanied by aggregation-induced emission (IFE-AIE).
View Article and Find Full Text PDFSci Rep
November 2024
Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, 690525, Kollam, Kerala, India.
Beilstein J Org Chem
November 2024
Chuvash State University named after I.N. Ulyanov, Moskovsky pr., 15, Cheboksary, Russia.
A facile method for the synthesis of arylidene derivatives of pyrindane - ()-7-arylmethylene-2-chloro-6,7-dihydro-5-cyclopenta[]pyridine-3,4-dicarbonitriles - was developed. Tunable full-color emission was achieved for the synthesized push-pull molecules, solely by changing donor groups while keeping both the conjugated system and acceptor part of the molecule unchanged. This represents a rare approach for the design of such fluorophores.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2025
College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, PR China. Electronic address:
Dual-state emission (DSE) dyes that exhibit intense emission in both dilute solution and solid state have obtained significant attention due to their wide applications. Herein, two series of indole-based BODIPYs (IB-BODIPYs) with DSE properties are synthesized through two routes. Those dyes display yellow to red fluorescence emission in dilute solution and red to near-infrared (NIR) fluorescence emission in the solid state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!