Background: Intrauterine adhesions (IUA) refers to endometrial fibrosis caused by irreversible damage of the endometrial basal layer. As the key regulators in tissue repair, regeneration, and fibrosis, macrophages play an essential role in endometrial regeneration and repair during the normal menstrual cycle. However, the mechanism of macrophages involved in IUA remains unclear.
Methods: In the late stages of proliferation, the endometrium was collected to make paraffin sections. HE and Masson staining were used to observing endometrial morphology and endometrial fibrosis. Immunohistochemistry and Western blotting were used to detect the expression level of fibrosis indexes COL1A1 and α-SMA. The macrophage infiltration was evaluated by immunohistochemistry for the expression levels of CD 206 and CD163. Next, we cultured the primary human endometrial stromal cells (HESCs), and then an IUA cell model was established with 10 ng/ml TGF-β1 for 72 h. THP 1 cells were differentiated by 100 ng/ml PMA into macrophages for 48 h, then macrophages were polarized to M2 macrophages by 20 ng/ml IL-4 for 24 h. The culture supernatants (M(IL-4) -S) of M2 macrophages were applied to the IUA cell model. The expression of fibrosis markers was then assessed using immunofluorescence and Western blotting.
Results: The results show that Patients with IUA have fewer endometrial glands and significantly increased fibrosis levels. Moreover, the infiltration of CD206-positive (M2) macrophages was significantly reduced in IUA patients, and negatively correlated with the expression of endometrial fibrosis indexes α-SMA and COL1A1. In addition, the primary HESCs treated with 10 ng/ml TGF-β1 for 72 h were found to have significantly increased levels of fibrosis indexes. Furthermore, supernatants from IL4-induced M2 macrophages inhibit the TGF-β1-induced fibrosis of HESCs.
Conclusions: M2 macrophages may negatively regulate the expression of COL1A1 and α-SMA, inhibiting the TGF-β1-induced fibrosis of HESCs. Our study suggests that targeting macrophage phenotypes and promoting the polarization of macrophages to M2 may become a novel strategy for the clinical treatment of IUA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.repbio.2023.100852 | DOI Listing |
World J Stem Cells
January 2025
Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100730, China.
Endometrial injury caused by repeated uterine procedures, infections, inflammation, or uterine artery dysfunction can deplete endometrial stem/progenitor cells and impair regeneration, thereby diminishing endometrial receptivity and evidently lowering the live birth, clinical pregnancy, and embryo implantation rates. Currently, safe and effective clinical treatment methods or gene-targeted therapies are unavailable, especially for severe endometrial injury. Umbilical cord mesenchymal stem cells and their extracellular vesicles are characterized by their simple collection, rapid proliferation, low immunogenicity, and tumorigenicity, along with their involvement in regulating angiogenesis, immune response, cell apoptosis and proliferation, inflammatory response, and fibrosis, Therefore, these cells and vesicles hold broad potential for application in endometrial repair.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China. Electronic address:
Intrauterine adhesion (IUA) is an endometrial damage repair disorder that leads to menstrual loss, amenorrhea, and infertility in women; therefore, addressing this dilemma is a critical challenge. In this study, a multifunctional hydrogel, comprising oxidized sodium alginate (OSA), strontium carbonate (SrCO), and betamethasone 21-phosphate sodium (BSP), was formulated to facilitate angiogenesis, reduce fibrosis, and support tissue repair in the treatment of IUA. The composite hydrogels showed significant bioactivity on human endometrial stromal cells (HESCs) and human umbilical vein endothelial cells (HUVECs), promoting the injured HESCs repair, reversing the degree of fibrosis to a certain extent, and enhancing the proliferation and migration of HUVECs.
View Article and Find Full Text PDFAbdom Radiol (NY)
January 2025
Department of Radiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, No. 321 Zhongshan Road, Nanjing, 210008, China.
Purpose: To evaluate the application of multi-parametric MRI (MP-MRI) combined with radiomics in diagnosing and grading endometrial fibrosis (EF).
Methods: A total of 74 patients with severe endometrial fibrosis (SEF), 41 patients with mild to moderate fibrosis (MMEF) confirmed by hysteroscopy, and 40 healthy women of reproductive age were prospectively enrolled. The enrolled data were randomly stratified and divided into a train set (108 cases: 28 healthy women, 29 with MMEF, and 51 with SEF) and a test set (47 cases: 12 healthy women, 12 MMEF and 23 SEF) at a ratio of 7:3.
Autoimmun Rev
January 2025
Office of Research on Women's Health, Office of the Director, National Institutes of Health, Bethesda, MD, United States of America; Scientific Consulting Group, Gaithersburg, MD, United States of America. Electronic address:
Endometriosis is a female-specific chronic condition that affects 1 in 10 women and other individuals with a uterus worldwide with common symptoms that include pelvic pain and infertility. Reliable and effective non-invasive biomarkers for endometriosis do not exist, and therefore currently a diagnosis of endometriosis requires direct visualization of lesions at surgery. Similarly, few safe and effective management strategies exist for endometriosis, with hormonal interventions and surgery only providing temporary symptom control.
View Article and Find Full Text PDFBioeng Transl Med
January 2025
Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital Taiyuan China.
The endometrium, the inner lining of the uterus, assumes a crucial role in the female reproductive system. Disorders and injuries impacting the endometrium can lead to profound consequences, including infertility and compromised women's overall health. Recent advancements in stem cell research have opened new possibilities for the treatment and repair of endometrial issues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!